AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) w...AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) were investigated under as-cast states. Compared with gravity casting, AZ91D with LPDC has much coarser grain size and second phases(Mg17Al12 and Al8Mn5). The different size and distribution of Mg17Al12 phase and shrinkage correspond to different mechanical properties. The ultimate tensile strengths and elongations are mainly decided by the content and distribution of shrinkage porosity, while the yield strengths are determined by the percentage and distribution of Mg17Al12 phase. The more and finer Mg17Al12 phase in the alloy, the relatively higher the yield strengths are. In the alloy without shrinkage, the mechanical properties are mainly determined by the size and distribution of Mg17Al12 phase. The finer Mg17Al12 phase, the better the mechanical properties are. Under optimal process, the density and mechanical properties of LPDC AZ91D are improved with fine microstructures.展开更多
With the rapid development of 3C industries,the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly.However,the thermal conductivities of most common Mg foundry...With the rapid development of 3C industries,the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly.However,the thermal conductivities of most common Mg foundry alloys(such as Mg-9wt%-1wt%Zn)are still relatively low.In this study,we developed a high-thermal-conductivity Mg-4Al-4Zn-4RE-1Ca(wt%,AZEX4441)alloy with good mechanical properties for ultrathin-walled cellphone components via high-pressure die casting(HPDC).The HPDC AZEX4441 alloy exhibited a fine homogeneous microstructure(average grain size of 2.8μm)with granular Al_(11)RE_(3),fibrous Al_(2)REZn_(2),and networked Ca_(6)Mg_(2)Zn_(3) phases distributed at the grain boundaries.The room-temperature thermal conductivity of the HPDC AZEX4441 alloy was 94.4 W·m^(-1)·K^(-1),which was much higher than 53.7 W·m^(-1)·K^(-1) of the HPDC AZ91D alloy.Al and Zn in the AZEX4441 alloy were largely consumed by the formation of Al_(11)RE_(3),Al_(2)REZn_(2),and Ca_(2)Mg_(6)Zn_(3) phases because of the addition of RE and Ca.Therefore,the lattice distortion induced by solute atoms of the AZEX4441 alloy(0.171%)was much lower than that of the AZ91D alloy(0.441%),which was responsible for the high thermal conductivity of the AZEX4441 alloy.The AZEX4441 alloy exhibited a high yield strength of~185 MPa,an ultimate tensile strength of~233 MPa,and an elongation of~4.2%.This result indicated that the tensile properties were comparable with those of the AZ91D alloy.Therefore,this study contributed to the development of high-performance Mg alloys with a combination of high thermal conductivity,high strength,and good castability.展开更多
This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It ...This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It is shown that the Mn-containing AE44 exhibits distinct age hardening response upon direct ageing(T5)due to the precipitation of nanoscale Al-Mn particles,as reported previously in a similar alloy.The T5 ageing leads to a significant improvement in strength with similar ductility.Consequently,the T5-aged AE44 has a remarkably better strength-ductility combination than most Mg die-casting alloys and even the Al die-casting alloy A380.Minor Mn addition is also shown to be critical for the creep resistance of AE44 whereas the influence of the RE constituent is not as significant as previously thought,which reaffirms that precipitation hardening of theα-Mg matrix is more important than grain boundary reinforcement by intermetallic phases for the creep resistance of die-cast Mg alloys.The findings in this work could provide new application perspectives for AE44,particularly in the automotive industry.展开更多
Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The inf...Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The influences of the slow shot speed, the fast shot speed and the biscuit thickness on the externally solidified crystals (ESCs) were investigated. With the increase of the biscuit thickness, the number of the ESCs in the cast samples decreases. Under a low slow shot speed, larg ESCs are found in the cast structure and a high fast shot speed results in more spherical ESCs. The relationships between ESCs and process parameters were also discussed.展开更多
X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiatio...X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes.展开更多
A newly developed Mg-4Zn-2La-3Y alloy with high strength was fabricated by high-pressure die casting method,and its microstructures were thoroughly studied using transmission electron microscopy.The results demonstrat...A newly developed Mg-4Zn-2La-3Y alloy with high strength was fabricated by high-pressure die casting method,and its microstructures were thoroughly studied using transmission electron microscopy.The results demonstrate that it owns fine grains and approximately highly interconnected intermetallic phase skeletons,and exhibits ultra-high strength at both room and high temperatures.Interestingly,the eutectic intermetallic skeleton of this alloys is consisted of numerous fine particles,which are mainly consisted of two intermetallic phases,namely W and Mg12RE.Multiple{101}twins and SFs were found in the Mg12RE phase while a few of SFs in the W phase.Additionally,minor long-period stacking ordered phase was observed in the eutectoid phase,and it probably nucleated on the Mg12RE phase following a certain OR as(0002)14H//(110)Mg12REand[1120]14H//[111]Mg12RE,or(0002)14H//(211)Mg12REand[1120]14H//[111]Mg12RE.This special intermetallic skeleton with many interfaces and planar faults can efficiently transfer dislocations across grain boundaries,and this is the key factor for the outstanding mechanical properties of the studied alloy.展开更多
Both a conventional flow distributer and an improved one with a flow buffer were applied respectively during the high pressure die casting(HPDC)process,and samples of AZ91D magnesium alloy with different microstructur...Both a conventional flow distributer and an improved one with a flow buffer were applied respectively during the high pressure die casting(HPDC)process,and samples of AZ91D magnesium alloy with different microstructure mainly consisting ofα-Mg grains,β-phase and porosities were obtained.According to the grain orientation analysis,the predominant deformation behavior inα-Mg grains was dislocation slip,supplemented by deformation twinning.Dislocation slip was more difficult to occur in the samples with the improved flow distributer on account of the fact that the size ofα-Mg grains in the microstructure was finer and more uniform.During the in situ tensile deformation test,cracks were observed to initiate from gas-shrinkage pore and island-shrinkage,and two main crack propagation mechanisms,porosity growth and coalescence were found accordingly.When the crack was in contact with theβ-phase,it would pass through and fracture the networkβ-phase,whereas bypass the islandβ-phase by detaching it from the surroundingα-Mg grains.Mechanical property tests showed that the samples with relatively more homogeneous microstructure would perform higher mechanical properties,which was the combined effect of matrixα-Mg grains,β-phase,and porosities.展开更多
The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results...The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce.展开更多
A rheo-diecasting process (RDC) was investigated for semisolid processing of an AZ91D magnesium alloy. The results of the RDC samples in as-cast state indicate that the microstructure of primary α-Mg particles has ...A rheo-diecasting process (RDC) was investigated for semisolid processing of an AZ91D magnesium alloy. The results of the RDC samples in as-cast state indicate that the microstructure of primary α-Mg particles has a fine size, nearly spherical morphology, and uniform distribution throughout the components. Due to the advanced microstructure and reduced level of defects, the RDC AZ91D Mg alloy exhibits an apparent improvement in mechanical properties. The quantitative metallographic investigations reveal that increasing the intensity of forced convection during the slurry preparation results in a promoted nucleation and reduced volume fi-acfion of the primary phase solidified in the slurry maker.展开更多
The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were in...The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature.展开更多
The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced devel...The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced developments in manufacturing critical parts for internal combustion engines used in power tools.Here we report the microstructure and mechanical properties of a newly developed die-cast Mg-RE(La,Ce,Nd,Gd)-Al alloy capable of working at higher elevated temperatures of 200-300℃.The new alloy delivers the yield strength of 94 MPa at 300℃,which demonstrates a 42%increase over the benchmark AE44 high temperature die-cast Mg alloy.The new alloy also has good stiffness at elevated temperatures with its modulus only decreasing linearly by 13%from room temperature up to 300℃.Thermal analysis shows a minor peak at 364.7℃in the specific heat curve of the new alloy,indicating a good phase stability of the alloy up to 300℃.Nd and Gd have more affinity to Al for the formation of the minority of divorced Al-RE(Nd,Gd)based compounds,and the stable Al-poor Mg_(12)RE(La_(0.22)Ce_(0.13)Nd_(0.31)Gd_(0.31))Zn_(0.39)Al_(0.13)compound acts as the continuous inter-dendritic network,which contribute to the high mechanical performance and stability of the new die-cast Mg alloy at 200-300℃.展开更多
Under the cold-chamber high pressure die casting (HPDC) process, samples were produced with AM60B magnesium alloy to investigate the microstructure characteristics of the eutectics, especially focusing on the consti...Under the cold-chamber high pressure die casting (HPDC) process, samples were produced with AM60B magnesium alloy to investigate the microstructure characteristics of the eutectics, especially focusing on the constitution, morphology and distribution of the eutectics over cross section of the castings. Attentions were also paid to study the effect of heat treatment on the eutectics in the die castings. Based on experimental analysis using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), it was determined that fully divorced eutectics consisting of c^-Mg and l%MglzA112 appeared at the grain boundary of the primary c^-Mg in the as-cast microstructure. Islands and networks of β-Mg17Al12 phase were observed in the central region of the castings, while the β-Mg17Al12 phase revealed a more dispersed and granular morphology on the surface layer. The two phases ratio β/α in the central region of the castings was approximately 10%, which was higher than that on the surface layer. Besides, the defect bands contained a higher percentage of the eutectics than the adjacent regions. After aging treatment (T6), only α-Mg phase was detected by XRD in the AM60B magnesium alloy, though a small amount of precipitated β-MgITAI12 phase was observed at the grain boundary. In contrast to the microstructure of die cast AZ91D magnesium alloy under the same T0 heat treatment, no discontinuous precipitation of the β-MgITAI12 phase was observed in AMO0B magnesium alloy die castings.展开更多
Effects of the mischmetal addition in range of 0.4 wt.% to 1.7 wt.% on the microstructure and mechanical properties of die-cast magnesium AZ91D were investigated to improve the elevated temperature mechanical properti...Effects of the mischmetal addition in range of 0.4 wt.% to 1.7 wt.% on the microstructure and mechanical properties of die-cast magnesium AZ91D were investigated to improve the elevated temperature mechanical properties of the alloy by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and tensile tests. The results revealed that mechanical prop- erties of die-cast magnesium alloy AZ91D-0.4%MM at 100 ℃ were near to those of die-cast magnesium alloy AZ9 ID. The ultimate tensile strength, 0.2% proof yield strength and elongation to failure of die-cast magnesium alloy AZ91D at 170 ℃ were 178, 129 MPa and 20%, respectively. In comparison, the ultimate tensile strength, 0.2% proof yield strength and elongation to faihtre of die-cast magnesium alloy AZ91D-0.4%MM at 170℃reached to 206, 142 MPa and 26%, respectively increased by 15.7%, 10% and 30%. Proper addition of mischmetal could enhance the mechanical properties at an elevated temperature, which was attributed to the formation of A1-RE phases with high thermal stability. Hence sliding of grain boundaries and cracks could be effectively hindered by A1-RE phases.展开更多
文摘AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) were investigated under as-cast states. Compared with gravity casting, AZ91D with LPDC has much coarser grain size and second phases(Mg17Al12 and Al8Mn5). The different size and distribution of Mg17Al12 phase and shrinkage correspond to different mechanical properties. The ultimate tensile strengths and elongations are mainly decided by the content and distribution of shrinkage porosity, while the yield strengths are determined by the percentage and distribution of Mg17Al12 phase. The more and finer Mg17Al12 phase in the alloy, the relatively higher the yield strengths are. In the alloy without shrinkage, the mechanical properties are mainly determined by the size and distribution of Mg17Al12 phase. The finer Mg17Al12 phase, the better the mechanical properties are. Under optimal process, the density and mechanical properties of LPDC AZ91D are improved with fine microstructures.
基金The authors are grateful for the financial support by the National Key Research and Development Program of China(No.2016YFB0301103)the National Natural Science Foundation of China(NSFC,No.51401010).
文摘With the rapid development of 3C industries,the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly.However,the thermal conductivities of most common Mg foundry alloys(such as Mg-9wt%-1wt%Zn)are still relatively low.In this study,we developed a high-thermal-conductivity Mg-4Al-4Zn-4RE-1Ca(wt%,AZEX4441)alloy with good mechanical properties for ultrathin-walled cellphone components via high-pressure die casting(HPDC).The HPDC AZEX4441 alloy exhibited a fine homogeneous microstructure(average grain size of 2.8μm)with granular Al_(11)RE_(3),fibrous Al_(2)REZn_(2),and networked Ca_(6)Mg_(2)Zn_(3) phases distributed at the grain boundaries.The room-temperature thermal conductivity of the HPDC AZEX4441 alloy was 94.4 W·m^(-1)·K^(-1),which was much higher than 53.7 W·m^(-1)·K^(-1) of the HPDC AZ91D alloy.Al and Zn in the AZEX4441 alloy were largely consumed by the formation of Al_(11)RE_(3),Al_(2)REZn_(2),and Ca_(2)Mg_(6)Zn_(3) phases because of the addition of RE and Ca.Therefore,the lattice distortion induced by solute atoms of the AZEX4441 alloy(0.171%)was much lower than that of the AZ91D alloy(0.441%),which was responsible for the high thermal conductivity of the AZEX4441 alloy.The AZEX4441 alloy exhibited a high yield strength of~185 MPa,an ultimate tensile strength of~233 MPa,and an elongation of~4.2%.This result indicated that the tensile properties were comparable with those of the AZ91D alloy.Therefore,this study contributed to the development of high-performance Mg alloys with a combination of high thermal conductivity,high strength,and good castability.
基金supported by Australian Research Council(LP160100690)Magontec Ltd.Monash Centre for Electron Microscopy(MCEM)。
文摘This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It is shown that the Mn-containing AE44 exhibits distinct age hardening response upon direct ageing(T5)due to the precipitation of nanoscale Al-Mn particles,as reported previously in a similar alloy.The T5 ageing leads to a significant improvement in strength with similar ductility.Consequently,the T5-aged AE44 has a remarkably better strength-ductility combination than most Mg die-casting alloys and even the Al die-casting alloy A380.Minor Mn addition is also shown to be critical for the creep resistance of AE44 whereas the influence of the RE constituent is not as significant as previously thought,which reaffirms that precipitation hardening of theα-Mg matrix is more important than grain boundary reinforcement by intermetallic phases for the creep resistance of die-cast Mg alloys.The findings in this work could provide new application perspectives for AE44,particularly in the automotive industry.
基金Project(2009AA03Z114)supported by the National High-tech Research and Development Program of ChinaProject supported by Tsinghua-Toyo R&D Center of Magnesium and Aluminum Alloys Processing Technology
文摘Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The influences of the slow shot speed, the fast shot speed and the biscuit thickness on the externally solidified crystals (ESCs) were investigated. With the increase of the biscuit thickness, the number of the ESCs in the cast samples decreases. Under a low slow shot speed, larg ESCs are found in the cast structure and a high fast shot speed results in more spherical ESCs. The relationships between ESCs and process parameters were also discussed.
基金the National Natural Science Foundation of China (No.51275269)the Tsinghua University Initiative Scientific Research Program (No.20121087918)the National Science and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China (No.2012ZX04012011) for financial support
文摘X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes.
基金supported by the National Natural Science Foundation of China under grants no.51701200 and 51871069the Scientific and Technological Developing Scheme of Jilin Province under grants no.20200801048GH。
文摘A newly developed Mg-4Zn-2La-3Y alloy with high strength was fabricated by high-pressure die casting method,and its microstructures were thoroughly studied using transmission electron microscopy.The results demonstrate that it owns fine grains and approximately highly interconnected intermetallic phase skeletons,and exhibits ultra-high strength at both room and high temperatures.Interestingly,the eutectic intermetallic skeleton of this alloys is consisted of numerous fine particles,which are mainly consisted of two intermetallic phases,namely W and Mg12RE.Multiple{101}twins and SFs were found in the Mg12RE phase while a few of SFs in the W phase.Additionally,minor long-period stacking ordered phase was observed in the eutectoid phase,and it probably nucleated on the Mg12RE phase following a certain OR as(0002)14H//(110)Mg12REand[1120]14H//[111]Mg12RE,or(0002)14H//(211)Mg12REand[1120]14H//[111]Mg12RE.This special intermetallic skeleton with many interfaces and planar faults can efficiently transfer dislocations across grain boundaries,and this is the key factor for the outstanding mechanical properties of the studied alloy.
基金financially the National Natural Science Foundation of China(No.51805389)Natural Science Foundation of Hubei Province of China(No.2018CFB210)111 Project(B17034)。
文摘Both a conventional flow distributer and an improved one with a flow buffer were applied respectively during the high pressure die casting(HPDC)process,and samples of AZ91D magnesium alloy with different microstructure mainly consisting ofα-Mg grains,β-phase and porosities were obtained.According to the grain orientation analysis,the predominant deformation behavior inα-Mg grains was dislocation slip,supplemented by deformation twinning.Dislocation slip was more difficult to occur in the samples with the improved flow distributer on account of the fact that the size ofα-Mg grains in the microstructure was finer and more uniform.During the in situ tensile deformation test,cracks were observed to initiate from gas-shrinkage pore and island-shrinkage,and two main crack propagation mechanisms,porosity growth and coalescence were found accordingly.When the crack was in contact with theβ-phase,it would pass through and fracture the networkβ-phase,whereas bypass the islandβ-phase by detaching it from the surroundingα-Mg grains.Mechanical property tests showed that the samples with relatively more homogeneous microstructure would perform higher mechanical properties,which was the combined effect of matrixα-Mg grains,β-phase,and porosities.
基金Financial support from Turkey Council of Higher Education(YOK) Scholarship for Faruk's PhD Study in Helmholtz-Zentrum Geesthacht HZG is also appreciated
文摘The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce.
文摘A rheo-diecasting process (RDC) was investigated for semisolid processing of an AZ91D magnesium alloy. The results of the RDC samples in as-cast state indicate that the microstructure of primary α-Mg particles has a fine size, nearly spherical morphology, and uniform distribution throughout the components. Due to the advanced microstructure and reduced level of defects, the RDC AZ91D Mg alloy exhibits an apparent improvement in mechanical properties. The quantitative metallographic investigations reveal that increasing the intensity of forced convection during the slurry preparation results in a promoted nucleation and reduced volume fi-acfion of the primary phase solidified in the slurry maker.
基金the National Key Technology R&D Program for the 11th Five-Year Plan(2006BAE04B01 ,2006BAE04B04) the National Basic Research Program ("973") of China (2007CB613705)
文摘The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature.
文摘The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced developments in manufacturing critical parts for internal combustion engines used in power tools.Here we report the microstructure and mechanical properties of a newly developed die-cast Mg-RE(La,Ce,Nd,Gd)-Al alloy capable of working at higher elevated temperatures of 200-300℃.The new alloy delivers the yield strength of 94 MPa at 300℃,which demonstrates a 42%increase over the benchmark AE44 high temperature die-cast Mg alloy.The new alloy also has good stiffness at elevated temperatures with its modulus only decreasing linearly by 13%from room temperature up to 300℃.Thermal analysis shows a minor peak at 364.7℃in the specific heat curve of the new alloy,indicating a good phase stability of the alloy up to 300℃.Nd and Gd have more affinity to Al for the formation of the minority of divorced Al-RE(Nd,Gd)based compounds,and the stable Al-poor Mg_(12)RE(La_(0.22)Ce_(0.13)Nd_(0.31)Gd_(0.31))Zn_(0.39)Al_(0.13)compound acts as the continuous inter-dendritic network,which contribute to the high mechanical performance and stability of the new die-cast Mg alloy at 200-300℃.
基金the financial support of the National High Technology Research and Development Program of China (Grant No. 2009AA03Z114)the Ministry of Science and Technology of China (Grant Nos. 2011ZX04014-052, 2011BAE22B02 and 2010DFA72760)
文摘Under the cold-chamber high pressure die casting (HPDC) process, samples were produced with AM60B magnesium alloy to investigate the microstructure characteristics of the eutectics, especially focusing on the constitution, morphology and distribution of the eutectics over cross section of the castings. Attentions were also paid to study the effect of heat treatment on the eutectics in the die castings. Based on experimental analysis using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), it was determined that fully divorced eutectics consisting of c^-Mg and l%MglzA112 appeared at the grain boundary of the primary c^-Mg in the as-cast microstructure. Islands and networks of β-Mg17Al12 phase were observed in the central region of the castings, while the β-Mg17Al12 phase revealed a more dispersed and granular morphology on the surface layer. The two phases ratio β/α in the central region of the castings was approximately 10%, which was higher than that on the surface layer. Besides, the defect bands contained a higher percentage of the eutectics than the adjacent regions. After aging treatment (T6), only α-Mg phase was detected by XRD in the AM60B magnesium alloy, though a small amount of precipitated β-MgITAI12 phase was observed at the grain boundary. In contrast to the microstructure of die cast AZ91D magnesium alloy under the same T0 heat treatment, no discontinuous precipitation of the β-MgITAI12 phase was observed in AMO0B magnesium alloy die castings.
基金Project supported by Natural Science Foundation of Inner Mongolia Autonomous Region of China(2014MS0517)
文摘Effects of the mischmetal addition in range of 0.4 wt.% to 1.7 wt.% on the microstructure and mechanical properties of die-cast magnesium AZ91D were investigated to improve the elevated temperature mechanical properties of the alloy by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and tensile tests. The results revealed that mechanical prop- erties of die-cast magnesium alloy AZ91D-0.4%MM at 100 ℃ were near to those of die-cast magnesium alloy AZ9 ID. The ultimate tensile strength, 0.2% proof yield strength and elongation to failure of die-cast magnesium alloy AZ91D at 170 ℃ were 178, 129 MPa and 20%, respectively. In comparison, the ultimate tensile strength, 0.2% proof yield strength and elongation to faihtre of die-cast magnesium alloy AZ91D-0.4%MM at 170℃reached to 206, 142 MPa and 26%, respectively increased by 15.7%, 10% and 30%. Proper addition of mischmetal could enhance the mechanical properties at an elevated temperature, which was attributed to the formation of A1-RE phases with high thermal stability. Hence sliding of grain boundaries and cracks could be effectively hindered by A1-RE phases.