期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Microstructure and mechanical properties of AM60B magnesium alloy prepared by cyclic extrusion compression 被引量:4
1
作者 王丽萍 陈添 +3 位作者 姜文勇 冯义成 曹国剑 朱岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3200-3205,共6页
The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure ca... The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure can be effectively refined with increasing the number of CEC passes. Once a critical minimum grain size was achieved, subsequent passes did not have any noticeable refining effect. As expected, the fine-grained alloy has excellent mechanical properties. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of two-pass CEC formed alloy are 72.2, 183.7 MPa, 286.3 MPa and 14.0%, but those of as-cast alloy are 62.3, 64 MPa, 201 MPa and 11%, respectively. However, there is not a clear improvement of mechanical properties with further increase in number of CEC passes in AM60B alloy. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of four-pass CEC formed alloy are 73.5, 196 MPa, 297 MPa and 16%, respectively. 展开更多
关键词 magnesium alloy cyclic extrusion compression microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of Mg-Si alloys processed by cyclic closed-die forging 被引量:2
2
作者 J.METAYER 叶兵 +3 位作者 郭炜 王渠东 周浩 F.MOLLET 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期66-75,共10页
Mg-xSi (x=0, 1.5, 3.3) alloys were fabricated and subjected to cyclic closed-die forging (CCDF), a new severe plastic deformation process, at 450 ℃ for 1, 3, and 5 passes. With applying CCDF, tensile strength, el... Mg-xSi (x=0, 1.5, 3.3) alloys were fabricated and subjected to cyclic closed-die forging (CCDF), a new severe plastic deformation process, at 450 ℃ for 1, 3, and 5 passes. With applying CCDF, tensile strength, elongation and hardness increase, while coarse Mg2Si particles break into smaller pieces and exhibit more uniform distribution. Mg-1.5%Si alloy exhibits a combination of improved strength and elongation after 5 passes of CCDF processing. The tensile strength is about 142 MPa and elongation is about 8%. The improvement in mechanical properties was further characterized by dry sliding wear testing. The results show that wear resistance improves with silicon content and CCDF process passes, particularly the first pass. The wear resistance increases by about 38% for Mg-3.3%Si after 5 passes of CCDF compared with pure Mg. The improvement of wear is related to microstructure refinement and homogenization based on the Archard equation and friction effect. 展开更多
关键词 MG2SI magnesium alloy MG2SI cyclic closed-die forging WEAR microstructure
下载PDF
Correlation between the Cyclic Stress Behavior and Microstructure in 316LN based on the Analysis of Hysteresis Loops
3
作者 常波 张峥 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期780-785,共6页
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre... Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level. 展开更多
关键词 cyclic stress behavior partitioning of hysteresis loops microstructure dislocation rearrangement internal stress
下载PDF
Application of cyclic upsetting-extrusion to semi-solid processing of AZ91D magnesium alloy 被引量:3
4
作者 陶健全 姜巨福 +5 位作者 陈红 肖远伦 张荣朝 胡庆华 赵军 赵强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期909-915,共7页
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur... The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting. 展开更多
关键词 AZ91D magnesium alloy semi-solid processing cyclic upsetting-extrusion mechanical properties microstructure
下载PDF
Microstructure and mechanical properties of AZ31 alloy prepared by cyclic expansion extrusion with asymmetrical extrusion cavity 被引量:6
5
作者 Min-jie LIANG Jie ZHENG +1 位作者 Huan LIU Bao-xing YAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期122-133,共12页
The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show th... The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur during the CEE-AEC process.After 3 passes,the microstructures of the deformed samples are refined,and the average grain size of the alloys in asymmetrical cavity region is 6.9μm.The maximum intensities of the basal textures increase with the increase in the number of passes,and the basal textures are deflected during the deformation process.The basal texture of the alloys in asymmetrical cavity region is tilted by approximately±45°from the normal direction(ND)to the extrusion direction(ED).Grain refinement strengthening and texture deflection significantly improve the comprehensive mechanical properties of the deformed alloys.After 3 passes,tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation-to-failure of the alloy in the asymmetric cavity region are 146 MPa,230 MPa and 29.7%,respectively. 展开更多
关键词 magnesium alloy microstructure cyclic expansion extrusion mechanical properties TEXTURE
下载PDF
Hot deformation behavior and microstructure evolution of as-cast AZ91D magnesium alloy without pre-homogenization treatment 被引量:3
6
作者 Yan Xu Lian-Xi Hu Yu Sun 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期338-346,共9页
The deformation behavior and the microstruc-ture evolution of as-cast AZ91D magnesium alloy without pre-homogenization treatment were systematically inves-tigated. The flow stress behavior was studied by com-pression ... The deformation behavior and the microstruc-ture evolution of as-cast AZ91D magnesium alloy without pre-homogenization treatment were systematically inves-tigated. The flow stress behavior was studied by com-pression tests in strain rate range of 0.001-1.000 s^-1 and deformation temperature range of 220-380 ℃ with a maximum deformation strain of 60 %. The dependence of flow stress on deformation temperature and strain rate was described by hyperbolic sine constitutive equation. Through regression analysis, the average apparent activa- tion energy and coefficient of strain rate sensitivity were estimated to be 181.98 kJ.mol^-1 and 0.14, respectively. The results also reveal that the variation of peak stress depends on strain rate and deformation temperature. Microstructure observation shows that, at temperatures higher than 300 ℃ and strain rates lower than 0.01 s^-1, DRX developed extensively at the grain boundaries and in the core of coarse grains, resulting in a more homogeneous microstructure. Furthermore, the effects of strain, defor-mation temperature, strain rate, and eutectic β phase on the microstructure evolution of as-cast AZ91D magnesium alloy were discussed. 展开更多
关键词 AZ91D magnesium alloy Isothermalcompression Constitutive equation Peak stress microstructure evolution
下载PDF
Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldments 被引量:5
7
作者 P.B.SRINIVASAN S.RIEKEHR +2 位作者 C.BLAWERT W.DIETZEL M.KO AK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期1-8,共8页
An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler mater... An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC. 展开更多
关键词 AZ31 magnesium alloy laser welding microstructure mechanical properties slow strain rate tensile test stress corrosion cracking FRACTOGRAPHY
下载PDF
Cryogenic and conventional milling of AZ91 magnesium alloy
8
作者 Vikas Marakini Srinivasa Pai P +1 位作者 Gururaj Bolar Bhaskara P Achar 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2503-2519,共17页
Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryog... Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryogenic machining on the surface integrity(SI)characteristics of AZ91 magnesium alloy.Face milling using uncoated carbide inserts have been performed under liquid nitrogen(LN_(2))assisted cryogenic condition and compared with conventional(dry)milling.Experiments are performed using machining parameters in terms of cutting speeds of 325,475,625 m/min,feed rates of 0.05,0.1,0.15 mm/teeth and depth of cuts of 0.5,1,1.5 mm respectively.Most significant surface integrity characteristics such as surface roughness,microhardness,microstructure,and residual stresses have been investigated.Behaviour of SI characteristics with respect to milling parameters have been identified using statistical technique such as ANOVA and signal-to-noise(S/N)ratio plots.Additionally,the multi criteria decision making(MCDM)techniques such as additive ratio assessment method(ARAS)and complex proportional assessment(COPRAS)have been utilized to identify the optimal conditions for milling AZ91 magnesium alloy under both dry and cryogenic conditions.Use of LN_(2)during machining,resulted in reduction in machining temperature by upto 29%with a temperature drop from 251.2℃under dry condition to 178.5℃in cryogenic condition.Results showed the advantage of performing cryogenic milling in improving the surface integrity to a significant extent.Cryogenic machining considerably minimized the roughness by upto 28%and maximised the microhardness by upto 23%,when compared to dry machining.Cutting speed has caused significant impact on surface roughness(95.33%-dry,92.92%-cryogenic)and surface microhardness(80.33%-dry,82.15%-cryogenic).Due to the reduction in machining temperature,cryogenic condition resulted in compressive residual stresses(maximumσ║=-113 MPa)on the alloy surface.Results indicate no harm to alloy microstructure in both conditions,with no alterations to grain integrity and minimal reduction in the average grain sizes in the near machined area,when compared to before machined(base material)surface.The MCDM approach namely ARAS and COPRAS resulted in identical results,with the optimal condition being cutting speed of 625 m/min,a feed rate of 0.05 mm/teeth,and a depth of cut of 0.5 mm for both dry and cryogenic environments. 展开更多
关键词 magnesium alloy Cryogenic machining ROUGHNESS MICROHARDNESS microstructure Residual stress Multi criteria decision making
下载PDF
Microstructural evolution and delayed hydride cracking of FSW-AZ31 magnesium alloy during SSRT 被引量:3
9
作者 曾荣昌 Wolfgang DIETZEL +2 位作者 Rudolf ZETTLER 甘为民 孙芯芯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3060-3069,共10页
Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fr... Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fractography of stress corrosion cracking(SCC) samples were observed by optical and scanning electron microscopy, respectively. An X-ray diffraction study was carried out on the fractured surfaces of the SCC specimens. The results indicated that a strong basal fiber was formed on the base material, whereas the grains in the stir zone were reoriented with their most basal planes tilted 25 o to the welding direction. Feather-like twins and hydride formed under slow strain rate tensile(SSRT) stress in air and aggressive solutions, respectively. Transgranular cracks propagated and finally failed on the retreating side in the solution. The hydride phase confirmed to sit on the fracture surface demonstrated the delayed hydride cracking(DHC) mechanism of the alloy. 展开更多
关键词 magnesium alloys stress corrosion cracking friction stir welding texture microstructure
下载PDF
Microstructure and properties of WE93 alloy
10
作者 何兰强 李永军 +5 位作者 李兴刚 马鸣龙 张奎 王献文 鄢建明 林海涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期790-794,共5页
The microstructure of WE93 alloy in different states and the mechanical properties at room temperature were investigated, and the creep behavior of the extruded and aged alloy at 200 ℃and at stress of 100, 125 and 15... The microstructure of WE93 alloy in different states and the mechanical properties at room temperature were investigated, and the creep behavior of the extruded and aged alloy at 200 ℃and at stress of 100, 125 and 150 MPa was also discussed. The result shows that the microstructure of as-cast WE93 alloy consists of α-Mg, Mg 12 (MM) and Mg 24 Y 5 with an average grain size of 45 μm. After being homogenized at 535 ℃for 18 h, the Mg 24 Y 5 phase is dissolved completely and there is only Mg 12 (MM) phase left around the grain boundaries. The grains do not grow up as prolonging the homogenization time. The extruded alloy has better mechanical properties than the as-cast alloy, especially the elongation increases to 12.5%. The extruded and aged alloy exhibits the highest yield strength and ultimate tensile strength of 315 and 385 MPa, respectively, however, the elongation decreases to 6.5%. The extruded and aged alloy exhibits good creep resistance at 200 ℃and at stress of 100 150 MPa. The creep stress exponent n is 2.97, suggesting that grain boundary sliding plays a dominant role at the corresponding temperature and applied stresses. 展开更多
关键词 rare-earth magnesium alloy mish-metal microstructure temperature stress CREEP
下载PDF
Establishment and application of flow stress models of Mg-Y-MM-Zr alloy
11
作者 马鸣龙 李兴刚 +4 位作者 李永军 何兰强 张奎 王献文 陈丽芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期857-862,共6页
The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformati... The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates. 展开更多
关键词 rare-earth magnesium alloy Zener-Hollomon parameter flow stress model microstructure
下载PDF
Effect of grain size on high-temperature stress relaxation behavior of fine-grained TC4 titanium alloy 被引量:15
12
作者 He-li PENG Xi-feng LI +4 位作者 Xu CHEN Jun JIANG Jing-feng LUO Wei XIONG Jun CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期668-677,共10页
In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay functi... In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery. 展开更多
关键词 stress relaxation grain size fine-grained microstructure TC4 titanium alloy DISLOCATION
下载PDF
Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075 被引量:3
13
作者 Bahareh Marzbanrad Mohammad Hadi Razmpoosh +1 位作者 Ehsan Toyserkani Hamid Jahed 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1467-1478,共12页
A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on mi... A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on microstructure,experiments were designed to successfully coat AA7075 on AZ31B with two different heat balance conditions to yield a coated sample with tensile residual stress and a sample with compressive residual stress in both coating and substrate.The effects of coating temperature on the microstructure of magnesium alloy and the interfaces of coated samples were then analyzed by SEM,EBSD,TEM in high-and low-heat input coating conditions.The interface of the AA7075 coating and magnesium alloy substrate under both conditions consists of a narrow-band layer with very fine grains,followed by columnar grains of magnesium that have grown perpendicular to the interface.At higher temperatures,this layer became wider.No intermetallic phase was detected at the interface under either condition.It is shown that the microstructure of the substrate was affected by coating temperature,leading to stress relief,dynamic recrystallization and even dynamic grain growth of magnesium under high temperature.Reducing the heat input and increasing the heat transfer decreased microstructural changes in the substrate. 展开更多
关键词 Cold spraying Heat balance Microstructural analysis Coating interface magnesium Alloy AZ31B Residual stress
下载PDF
Effect of pulsed current on AZ31B magnesium sheets during annealing 被引量:2
14
作者 Kai LIU Xiang-huai DONG Wen SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期735-740,共6页
The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show th... The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show that PC strengthens the migration of boundaries,and then the twin grains,most of which distribute in the coarse grains,“spheroidize”to equiaxed grains,thus separating the coarse grains and refining the microstructure.This process homogenizes the initial microstructure and eliminate the typically lamellar twin grains.Moreover,PC also strengthens the dislocation annihilation.When the specimens were annealed by PC at 300℃for 4 min,the dislocation density was even lower than that annealed by furnaces at 400℃for 3 h before deformation.Furthermore,dislocation annihilation is enhanced with the increase of peak current density and the decrease of pulsed frequency. 展开更多
关键词 pulsed current AZ31B magnesium alloy ANNEALING microstructure evolution TWINNING dislocation annihilation
下载PDF
Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy 被引量:1
15
作者 Wu Wei Dai Li +1 位作者 Che Xin Chen Lijia 《China Foundry》 SCIE CAS 2013年第6期380-384,共5页
Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to in... Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-AI-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-AI-Mn-Ce alloys were analyzed. The results show that the Mg-AI-Mn-Ce alloys under die-cast (F) and aged (T5) states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-AI-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-AI-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly. 展开更多
关键词 magnesium alloy low cycle fatigue cyclic stress response fatigue life die cast
下载PDF
Hot-compression constitutive relation of as-cast AZ31 magnesium alloy 被引量:2
16
作者 史褆 余琨 +3 位作者 黎文献 王日初 王晓艳 蔡志勇 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期336-341,共6页
In hot-compression process,the various factors have obvious effects on the deformation behavior of AZ31 magnesium alloy deformation behavior. To understand the hot-compression constitutive relation thoroughly,the stre... In hot-compression process,the various factors have obvious effects on the deformation behavior of AZ31 magnesium alloy deformation behavior. To understand the hot-compression constitutive relation thoroughly,the stress-strain behavior of AZ31 magnesium alloy at various strain rates and different deformation temperatures were investigated under maximum strain of 60%. The microstructure of the experimental alloy was studied in the hot-compression procedure. The experimental results show that the relation of peak flow stress,strain rate and temperature can be described by Z parameter which contains Arrheniues item. The strain rate and the deformation temperature are the key parameters affecting deformation activation energy. 展开更多
关键词 镁合金 热处理技术 流体压力 微观结构
下载PDF
Hot deformation behavior of rare earth magnesium alloy without pre-homogenization treatment 被引量:2
17
作者 马鸣龙 张奎 +2 位作者 李兴刚 李永军 张康 《中国有色金属学会会刊:英文版》 CSCD 2008年第A01期132-139,共8页
The behavior and structure evolvement of as-cast Mg-Gd-Y-Nd-Zr magnesium alloy during the hot deformation process were discussed.The flow stress behavior of magnesium alloy over the strain rate range of 0.002-1 s^(-1)... The behavior and structure evolvement of as-cast Mg-Gd-Y-Nd-Zr magnesium alloy during the hot deformation process were discussed.The flow stress behavior of magnesium alloy over the strain rate range of 0.002-1 s^(-1) and the temperature range of 573-723 K was researched on Gleeble-1500D hot simulator under the maximum deformation degree of 60%.The experimental results show that the relationship between stress and strain is obviously affected by the strain rate and deformation temperature.The important softening mechanisms are eutectic melting and discontinuous dynamic recrystallization(DDRX) during deformation.The fragments of eutectic melting along the boundaries can turn round so as to take effect of the slippage between grains.The flow stress of Mg-7Gd-5Y-1.2Nd-Zr magnesium alloy during high temperature deformation can be represented by a Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation.The strain coefficient n and deformation activation energy Q are evaluated by linear regression analysis.A,αand n in the analytical expressions ofσare fitted to be 2.401 93×10^(15),0.017 3 MPa^(-1) and 3.218 19, respectively.The hot deformation activation energy of alloy during hot deformation is 234.950 58 kJ/mol.The results also show that the structure of primitive microstructure has an effect on the plastic deformation. 展开更多
关键词 镁合金 热处理 微观结构 流动压力
下载PDF
Effect of large deformation on microstructure of ZK60 alloy 被引量:1
18
作者 林金保 王渠东 +2 位作者 陈永军 张陆军 丁文江 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1750-1753,共4页
Microstructure evolution of ZK60 magnesium alloy deformed at 623 K by cyclic extrusion compression (CEC) large deformation method was investigated. ZK60 alloy was deformed in the range of accumulated true strain of 0.... Microstructure evolution of ZK60 magnesium alloy deformed at 623 K by cyclic extrusion compression (CEC) large deformation method was investigated. ZK60 alloy was deformed in the range of accumulated true strain of 0.8-17. The microstructure of evolution was investigated by optical microscope (OM) and transmission electron microscopy (TEM). The results show that microstructure is obviously refined, and homogenous equiaxed microstructure is achieved in the entire range of the examined deformations by subjected to CEC deformation. By increasing the accumulated strain to 17, the grain size decreases into sub-micron regime with about several hundred nanometers. The mechanism of grain refinement in ZK60 alloy by CEC can be attributed to continuous dynamic recovery and recrystallization. 展开更多
关键词 镁合金 微观结构 金属变形 循环挤压
下载PDF
Cyclic deformation behaviors of Ti-46Al-2Cr-2Nb-0.15B alloy during thermo-mechanical fatigue tests
19
作者 项宏福 戴安伦 +2 位作者 王冀恒 李惠 杨锐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2174-2180,共7页
Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperatu... Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperature. Cyclic deformation curves, stress-strain hysteresis loops under different temperature--strain cycles were analyzed and dislocation configurations were also observed by TEM. The mechanisms of cyclic hardening or softening during thermo-mechanical fatigue (TMF) tests were also discussed. Results showed that thermo-mechanical fatigue lives largely depended on the applied mechanical strain amplitudes, applied types of strain and temperature. On the hysteresis loops appeared two apparent asymmetries: one was zero asymmetry and the other was tensile and compressive asymmetry. Dislocations configuration and slip behaviors were contributed to cyclic hardening or cyclic softening. 展开更多
关键词 titanium-aluminium alloy thermo-mechanical fatigue cyclic stress response hysteresis loop DISLOCATION
下载PDF
Effect of Cyclic Stress Reduction on the Creep Characteristics of AZ91 Magnesium Alloy
20
作者 Alaa Farag Abd El-Rehim 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1065-1073,共9页
The creep deformation behavior of aged AZ91 magnesium alloy under the cyclic stress reduction has been investigated in the temperature range 353–383 K. The microstructural evolution of the AZ91 magnesium alloy at dif... The creep deformation behavior of aged AZ91 magnesium alloy under the cyclic stress reduction has been investigated in the temperature range 353–383 K. The microstructural evolution of the AZ91 magnesium alloy at different heat treatment conditions has been studied using optical microscopy and scanning electron microscopy. The minimum strain rate, e_min, was found to be higher under cyclic stress reduction condition than that under static creep condition for the same maximum stress. Cyclic creep acceleration is interpreted using the interaction of moving dislocations with the existing b-phase(Mg17Al12) precipitates. The mean value of the activation energy of secondary creep stage was found to be equal to that quoted for lattice self-diffusion of magnesium mechanism. 展开更多
关键词 magnesium alloys microstructure cyclic stress dislocations
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部