期刊文献+
共找到132,234篇文章
< 1 2 250 >
每页显示 20 50 100
Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing 被引量:3
1
作者 Guowei Wang Dan Song +5 位作者 Yanxin Qiao Jiangbo Cheng Huan Liu Jinghua Jiang Aibin Ma Xiaolong Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1422-1439,共18页
Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium allo... Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating. 展开更多
关键词 magnesium-lithium alloy Super-hydrophobic coating One-step hydrothermal process Corrosion resistance Multiscale microstructure
下载PDF
Effect of air-formed film on corrosion behavior of magnesium-lithium alloys
2
作者 Yanlong Ma Lei Liu +4 位作者 Xinxin Zhang Fei Guo Xiaorong Zhou Mingbo Yang Jingfeng Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4325-4337,共13页
It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li ... It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li alloys has not been fully understood. Firstly, the air-formed films formed on α and β phases in a dual-phase LZ91 Mg-Li alloy after exposure to laboratory air for up to 48 h have been examined by SEM under the assistance of ultramicrotomy. Then, the effect of the air-formed film on surface potential and, consequently, corrosion/oxidation behavior of the alloy has been investigated. Finally, in order to exclude the influence from α phase, the structure of the air-formed film on β phase and its effect on corrosion/oxidation behavior of Mg-Li alloys have been studied based on a single-phase LA141 Mg-Li alloy. The results show that the air-formed film is thin and negligible on α phase but thick on β phase after prolonged exposure to laboratory air. The thick air-formed film on β phase has a multilayer structure with an inner layer consisting of Mg O/Mg(OH)_(2) and outer layer consisting of Li_(2)CO_(3), which greatly elevates the surface potential of β phase in air. Both LZ91 and LA141 Mg-Li alloys firstly undergo uniform corrosion and then filiform corrosion when immersed in Na Cl solution and the pre-existed air-formed film on β-Li phase can retard the occurrence of filiform corrosion in the alloys. 展开更多
关键词 magnesium-lithium alloy Air-formed film Uniform corrosion Filiform corrosion
下载PDF
Compression behavior of magnesium-lithium alloy at room temperature
3
作者 王聪 李卓群 +1 位作者 徐永波 韩恩厚 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1721-1724,共4页
The mechanical properties of LA40 magnesium alloy were investigated under compression at room temperature. In the applied strain rate range from 1.33×10-4s-1 to 6.66×10-4s-1,this alloy shows positive strain ... The mechanical properties of LA40 magnesium alloy were investigated under compression at room temperature. In the applied strain rate range from 1.33×10-4s-1 to 6.66×10-4s-1,this alloy shows positive strain rate sensitivity (SRS). Most importantly, the Portevin-Le Chatelier(PLC) effect which is an interesting and dominant feature in tensile tests disappears under compressive conditions. Only one twinning system is activated under tensile deformation, while at least two twinning modes are operative during compression. Additionally, the effect of dynamic strain aging (DSA), and the main mechanism for the onset of PLC phenomenon during tension, will be weakened because the strengthened obstructing influence of twins on solute atoms and the disappearance of PLC is inevitable. 展开更多
关键词 压缩行为 机械性能 镁合金 温度条件 应变分析
下载PDF
Preparation and corrosion resistance of rare earth-silane composite conversion coatings on magnesium-lithium alloy surface 被引量:2
4
作者 Fang-Fang Xu Yong Zhao Yue Xu 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期1011-1017,共7页
The poor corrosion resistance of magnesiumlithium alloy surface works against its application in aerospace,automobile,electronics,etc.In this research,some kinds of non-toxic and non-polluting rare earth and silane(RE... The poor corrosion resistance of magnesiumlithium alloy surface works against its application in aerospace,automobile,electronics,etc.In this research,some kinds of non-toxic and non-polluting rare earth and silane(RE-Si)composite conversion coatings were built up on Mg-Li alloy surface,and formation process of coatings was investigated.The parameters for coating preparation were determined,including immersion time and temperature,pH value of conversion solution and curing time.The optimized technological parameters for preparation of RE-Si composite coating were finally confirmed.The influence of doping nanoparticles on RE-Si composite coating was also discussed,and the microstructure of coatings shows that the addition of nanoparticles can effectively improve the compactness and uniformity of composite coating.The corrosion resistance of specimens with RE-Si composite conversion coating is improved to a great extent compared with those of substrate or specimens with single rare earth(RE)conversion coating or with silane coating.The result also indicates that corrosion resistance of RE-Si composite coating doping with nanoparticles is further improved.Composition of the composite coatings was analyzed,and the effect of RE elements and silane on coating formation process was investigated.Corrosion resistance mechanism of composite coatings on Mg-Li alloy surface was discussed. 展开更多
关键词 magnesium-lithium alloy Rare earth-silane composite coating NANOPARTICLES Corrosion resistance
原文传递
Superplasticity of fine-grained Mg-10Li alloy prepared by severe plastic deformation and understanding its deformation mechanisms
5
作者 H.T.Jeong S.W.Lee W.J.Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期316-331,共16页
The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph... The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests. 展开更多
关键词 magnesium-lithium alloy SUPERPLASTICITY Severe plastic deformation Grain size Grain growth
下载PDF
Effect of icosahedral phase formation on the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li(in wt.%)based alloys
6
作者 Shuo Wang Daokui Xu +2 位作者 Dongliang Wang Zhiqiang Zhang Baojie Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期225-236,共12页
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa... Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism. 展开更多
关键词 magnesium-lithium alloy Stress corrosion cracking I-phase Fracture analysis
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:1
7
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
8
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:1
9
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
10
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:1
11
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:1
12
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 Laser powder bed fusion Layer thickness Process optimization
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
13
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion 被引量:1
14
作者 Xiaoshuang Li Dmitry Sukhomlinov Zaiqing Que 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期118-128,共11页
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond... Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment. 展开更多
关键词 multi-material additive manufacturing laser-based powder bed fusion thermal diffusivity dissimilar metals copper alloy
下载PDF
New insights on the high-corrosion resistance of UHP Mg-Ge alloys tested in a simulated physiological environment 被引量:1
15
作者 Ting Liu Xingrui Chen +4 位作者 Jeffrey Venezuela Yuan Wang Zhiming Shi Wenyi Chen Matthew Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1026-1044,共19页
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M... UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities. 展开更多
关键词 UHP Mg-Ge alloy Cathodic kinetics suppression Biodegradable metals In vitro corrosion Magnesium corrosion.
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:1
16
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
17
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics alloyING
下载PDF
Design of high-temperature superconductors at moderate pressures by alloying AlH3 or GaH3
18
作者 Xiaowei Liang Xudong Wei +4 位作者 Eva Zurek Aitor Bergara Peifang Li Guoying Gao Yongjun Tian 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期94-103,共10页
Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achiev... Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures. 展开更多
关键词 alloyING alloyS SUPERCONDUCTORS
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
19
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization
20
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE alloy design Machine learning Bayesian optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部