Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped B...The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p–d exchange-like p–p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.展开更多
In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resi...In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.展开更多
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exh...The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exhibit a soft magnetic property.The structural and magnetic properties of Co/Cu(Ni) and Co/Ti multilayers were examined as a function of the spacer layer thickness (d Ti and d Cu(Ni) ) by low angle X ray diffraction (LAXRD) and VSM measurements.The saturation magnetization M s of the Co/Ti multilayers was found to decrease with d Ti and approached to a constant value when d Ti was thick enough.But in the Co/Cu(Ni) multilayers,the M s was found to oscillate with d Cu(Ni) when d Cu(Ni) was less than 3.0 nm,and the oscillation period was about 1.0 nm.This arose from the different interlayer magnetic coupling effects.We interpret these two different kinds of interlayer magnetic couplings as the consequence of the competition between the RKKY like and superexchange couplings.展开更多
This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the no...This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the nonuniform magnetic field of a permanent magnet has been discussed. The difficult problem that machining wastes attracted by a permanent magnet above the iron base platform has been solved.展开更多
Ti_(3)C_(2)Tx MXene is widely regarded as a potential micro-wave absorber due to its dielectric multi-layered structure.However,missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic par...Ti_(3)C_(2)Tx MXene is widely regarded as a potential micro-wave absorber due to its dielectric multi-layered structure.However,missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condi-tion.Herein,with the inspiration from dielectric-magnetic synergy,this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method.Ni2+ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption.Benefiting from the possible“seed-germination”effect,the“seeds”Ni^(2+)grow into“buds”Ni nanoparticles and“stem”carbon nanotubes(CNTs)from the enlarged“soil”of MXene skeleton.Due to the improved impedance matching con-dition,the MXene-CNTs/Ni hybrid holds a superior microwave absorp-tion performance of−56.4 dB at only 2.4 mm thickness.Such a distinctive 3D architecture endows the hybrids:(i)a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability,(ii)a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability,confirmed by the off-axis electron holography.These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.展开更多
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion,especially in the microwave absorption(MA) field...Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion,especially in the microwave absorption(MA) field.Herein,porous Ni1-xCox@Carbon composites derived from metal-organic framework(MOF)were successfully synthesized via solvothermal reaction and subsequent annealing treatments.Benefiting from the coordination,carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure.During the thermal decomposition,generated magnetic particles/clusters acted as a catalyst to promote the carbon sp^2 arrangement,forming special core-shell architecture.Therefore,pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites.Surprisingly,magnetic-dielectric Ni@C composites possessed the strongest reflection loss value-59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz.Meanwhile,the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%.Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.展开更多
Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system.However,it is still challenging for dielectric–...Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system.However,it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave(EMW)performance with ultra-low matching thickness(≤1 mm).Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale,a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology(~1 cm in length)were achieved via a special magnetic field-induced growth.Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation.The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton,resulting in the impressive permittivity even at high frequencies.Consequently,the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm.Thus,based on the modulation of electromagnetic parameters,this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.展开更多
Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezo...Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.展开更多
A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1...A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.展开更多
In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the subs...In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the substrate-integrated split-ring resonator(SI-SRR),is firstly proposed to achieve negative permeability at the antenna operating frequency.By integrating SI-SRR in between two closely spaced antennas,magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR,reducing NFMC between the two antennas.To verify the technique,a prototype was fabricated and measured.The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067 A.Due to high integration,this technique provides an effective alternative to high-isolation antenna array.展开更多
166.6-MHz quarter-waveβ=1 superconducting cavities have been adopted for the High Energy Photon Source,a 6-GeV diffraction-limited synchrotron light source currently under construction.A large helium jacket was requi...166.6-MHz quarter-waveβ=1 superconducting cavities have been adopted for the High Energy Photon Source,a 6-GeV diffraction-limited synchrotron light source currently under construction.A large helium jacket was required to accommodate the enlarged cavity beam pipe for the heavy damping of higher-order modes;the original electric-probe pickup thus becomes inevitably long with unfavorable mechanical properties.Relocated to an existing high-pressure-rinsing port,a magnetic-loop pickup was designed,characterized by low radio-frequency and cryogenic losses and being multipacting-free and insensitive to manufacturing and assembly tolerances.The consequent removal of the original pickup port from the cavity largely simplified the helium jacket fabrication and may also reduce cavity contamination.This paper presents a comprehensive design of a low-loss magnetic-coupling pickup for quarter-waveβ=1 superconducting cavities.The design can also be applied to other non-elliptical structures.展开更多
By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor(DMS). For a typical compound Ba(Zn(0.944)Mn(0.05...By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor(DMS). For a typical compound Ba(Zn(0.944)Mn(0.056))2P2 with only spin doping, due to the superexchange interaction between Mn atoms and the lack of itinerant carriers, the short-range antiferromagnetic coupling dominates. Partially substituting K atoms for Ba atoms, which introduces itinerant hole carriers into the p orbitals of P atoms so as to link distant Mn moments with the spin-polarized hole carriers via the p–d hybridization between P and Mn atoms, is very crucial for the appearance of ferromagnetism in the compound. Furthermore, applying hydrostatic pressure first enhances and then decreases the ferromagnetic coupling in(Ba0.75 K0.25)(Zn(0.944)Mn(0.056))2P2 at a turning point around 15 GPa, which results from the combined effects of the pressure-induced variations of electron delocalization and p–d hybridization. Compared with the BaZn2 As2-based DMS, the substitution of P for As can modulate the magnetic coupling effectively. Both the results for BaZn2 P2-based and BaZn2As2-based DMSs demonstrate that the robust antiferromagnetic(AFM) coupling between the nearest Mn–Mn pairs bridged by anions is harmful to improving the performance of these Ⅱ–Ⅱ–Ⅴ based DMS materials.展开更多
A novel millimeter-wave waveguide-to-microstrip transition based on magnetic-coupling is presented in this paper.The mode conversion of electromagnetic field is realized with the ring strip line of arbitrary shape in ...A novel millimeter-wave waveguide-to-microstrip transition based on magnetic-coupling is presented in this paper.The mode conversion of electromagnetic field is realized with the ring strip line of arbitrary shape in the E-plane of rectangular waveguide and the eccentric quasi-coaxial line,which is partially filled with media and consists of outer and inner rectangular conductors.The structure has the advantages of low loss,wide bandwidth,compact structure,and avoiding debug.From 27 GHz to 40 GHz,the experiment results show that the insertion loss is less than 1.2 dB and the return loss is better than 13.5 dB for the back-to-back transition with semicircle ring strip lines.展开更多
Cr/SmCo/Cr thin films with Sm concentration of 37.7 at.% were deposited on glass substrates by magnetron sputtering. Measurement of magnetic properties showed that the SmCo film possessed good magnetic anisotropy, a h...Cr/SmCo/Cr thin films with Sm concentration of 37.7 at.% were deposited on glass substrates by magnetron sputtering. Measurement of magnetic properties showed that the SmCo film possessed good magnetic anisotropy, a high coercivity of 3019 kA/m and low magnetic exchange coupling. Microstructure analysis showed that crystallized SmCo5 magnetic phase, non-magnetic SmCo2 phase and Sm2Co7 phase co-existed in the film. The non-magnetic SmCo2 phase might function as isolator of SmCo grains, leading to a decrease of magnetic exchange coupling. Moreover, a Cr2O3 oxide layer which could protect the SmCo layer from oxidation formed at the surface of the Cr cap layer.展开更多
The perovskite La_(0.67)Ca_(0.33)MnO_3/La_(0.67)Sr_(0.33)CoO_3/La_(0.67)Ca_(0.33)MnO_3 trilayers were fabricated by a facing-target sputtering technique and their magnetotransport properties were investigated. The mag...The perovskite La_(0.67)Ca_(0.33)MnO_3/La_(0.67)Sr_(0.33)CoO_3/La_(0.67)Ca_(0.33)MnO_3 trilayers were fabricated by a facing-target sputtering technique and their magnetotransport properties were investigated. The magnetoresistance is dependent on spacer thickness and dramatically decreases when La_(0.67)Sr_(0.33)CoO_3 layer is thick enough because of its short-circuiting effect. Different from La_(0.67)Ca_(0.33)MnO_3 single layer, trilayer films with thin La_(0.67)Sr_(0.33)CoO_3 spacer have the enhanced metal-semiconductor transition temperature (T_(MS)) of La_(0.67)Ca_(0.33)MnO_3 layers. The magnetic coercivity H_C shows a nonmonotonic behavior with changing the spacer layer thickness at 230 K. The waist-like hysteresis indicates that there is an indirect exchange coupling between the top and bottom La_(0.67)Ca_(0.33)MnO_3 layers across the spacer La_(0.67)Sr_(0.33)CoO_3 layer.展开更多
The perovskite bilayers La0.67Ca0.33MnO3 (LCMO) (100 nm) / La0.67Sr0.33MnO3(LSMO) (100 nm) and LSMO (100 nm) / LCMO (100 nm) are fabricated by a facing-target sputtering technique. Their transport and magn...The perovskite bilayers La0.67Ca0.33MnO3 (LCMO) (100 nm) / La0.67Sr0.33MnO3(LSMO) (100 nm) and LSMO (100 nm) / LCMO (100 nm) are fabricated by a facing-target sputtering technique. Their transport and magnetic properties are investigated. It is found that the transport properties between them are different obviously due to distinguishable structures, and the different lattice strains in both films result in the difference of metal-to-insulator transition. Only single-step magnetization loop appears in our bilayers from 5K to 320K, and the coercive force of LSMO/LCMO varies irregularly with a minimum ~ 2387A/m which is lower than that of LCMO and LSMO single layer films. The behaviour is explained by some magnetic coupling.展开更多
Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/ha...Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/hard multilayer magnets including some new results and phenomena from an experimental point of view. According to the different component of the oriented hard phase in the nanocomposite soft/hard multilayer magnets, three types of magnets will be discussed:1) anisotropic Nd2Fe(14)B based nanocomposite multilayer magnets, 2) anisotropic SmCo5 based nanocomposite multilayer magnets, and 3) anisotropic rare-earth free based nanocomposite multilayer magnets. For each of them, the formation of the oriented hard phase, exchange coupling, coercivity mechanism, and magnetic properties of the corresponding anisotropic nanocomposite multilayer magnets are briefly reviewed, and then the prospect of realization of bulk magnets on new results of anisotropic nanocomposite multilayer magnets will be carried out.展开更多
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975066)
文摘The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p–d exchange-like p–p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.
基金The National Natural Science Youth Foundation of China(No.51507032)the Natural Science Foundation of Jiangsu Province(No.BK20150617)the Fundamental Research Funds for the Central Universities
文摘In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.
文摘The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exhibit a soft magnetic property.The structural and magnetic properties of Co/Cu(Ni) and Co/Ti multilayers were examined as a function of the spacer layer thickness (d Ti and d Cu(Ni) ) by low angle X ray diffraction (LAXRD) and VSM measurements.The saturation magnetization M s of the Co/Ti multilayers was found to decrease with d Ti and approached to a constant value when d Ti was thick enough.But in the Co/Cu(Ni) multilayers,the M s was found to oscillate with d Cu(Ni) when d Cu(Ni) was less than 3.0 nm,and the oscillation period was about 1.0 nm.This arose from the different interlayer magnetic coupling effects.We interpret these two different kinds of interlayer magnetic couplings as the consequence of the competition between the RKKY like and superexchange couplings.
文摘This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the nonuniform magnetic field of a permanent magnet has been discussed. The difficult problem that machining wastes attracted by a permanent magnet above the iron base platform has been solved.
基金supported by the National Natural Science Foundation of China(51725101,11727807,51672050,61790581)the Ministry of Science and Technology of China(2018YFA0209102)。
文摘Ti_(3)C_(2)Tx MXene is widely regarded as a potential micro-wave absorber due to its dielectric multi-layered structure.However,missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condi-tion.Herein,with the inspiration from dielectric-magnetic synergy,this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method.Ni2+ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption.Benefiting from the possible“seed-germination”effect,the“seeds”Ni^(2+)grow into“buds”Ni nanoparticles and“stem”carbon nanotubes(CNTs)from the enlarged“soil”of MXene skeleton.Due to the improved impedance matching con-dition,the MXene-CNTs/Ni hybrid holds a superior microwave absorp-tion performance of−56.4 dB at only 2.4 mm thickness.Such a distinctive 3D architecture endows the hybrids:(i)a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability,(ii)a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability,confirmed by the off-axis electron holography.These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.
基金supported by the Ministry of Science and Technology of China (973 Project No. 2018YFA0209102)the National Natural Science Foundation of China (11727807, 51725101, 51672050, 61790581)Science and Technology Commission of Shanghai Municipality (16DZ2260600)。
文摘Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion,especially in the microwave absorption(MA) field.Herein,porous Ni1-xCox@Carbon composites derived from metal-organic framework(MOF)were successfully synthesized via solvothermal reaction and subsequent annealing treatments.Benefiting from the coordination,carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure.During the thermal decomposition,generated magnetic particles/clusters acted as a catalyst to promote the carbon sp^2 arrangement,forming special core-shell architecture.Therefore,pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites.Surprisingly,magnetic-dielectric Ni@C composites possessed the strongest reflection loss value-59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz.Meanwhile,the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%.Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
基金supported by the National Key Research and Development Program of China (Grant No. 2019YFE0122900)the National Natural Science Foundation of China (No 51971162, U1933112, 51671146)China Postdoctoral Science Foundation (Grant No. 2020M671208)
文摘Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system.However,it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave(EMW)performance with ultra-low matching thickness(≤1 mm).Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale,a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology(~1 cm in length)were achieved via a special magnetic field-induced growth.Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation.The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton,resulting in the impressive permittivity even at high frequencies.Consequently,the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm.Thus,based on the modulation of electromagnetic parameters,this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.
基金Project supported by the National Natural Science Foundation of China(Grant No.51205302)the Fundamental Research Funds for the Central Universities,China(Grant No.K5051304011)
文摘Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.
基金supported by the National Natural Science Foundation of China (No. 20971080)the Natural Science Foundation of Shandong Province (No. ZR2009BM026 and ZR2009BL002)
文摘A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.61331005,61471388,61501503,61501502,61501497,51575524,61302023,and 11304393)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2015JM6300 and 2015JM6277)
文摘In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the substrate-integrated split-ring resonator(SI-SRR),is firstly proposed to achieve negative permeability at the antenna operating frequency.By integrating SI-SRR in between two closely spaced antennas,magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR,reducing NFMC between the two antennas.To verify the technique,a prototype was fabricated and measured.The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067 A.Due to high integration,this technique provides an effective alternative to high-isolation antenna array.
基金supported by High Energy Photon Source(HEPS)projecta major national science and technology infrastructure。
文摘166.6-MHz quarter-waveβ=1 superconducting cavities have been adopted for the High Energy Photon Source,a 6-GeV diffraction-limited synchrotron light source currently under construction.A large helium jacket was required to accommodate the enlarged cavity beam pipe for the heavy damping of higher-order modes;the original electric-probe pickup thus becomes inevitably long with unfavorable mechanical properties.Relocated to an existing high-pressure-rinsing port,a magnetic-loop pickup was designed,characterized by low radio-frequency and cryogenic losses and being multipacting-free and insensitive to manufacturing and assembly tolerances.The consequent removal of the original pickup port from the cavity largely simplified the helium jacket fabrication and may also reduce cavity contamination.This paper presents a comprehensive design of a low-loss magnetic-coupling pickup for quarter-waveβ=1 superconducting cavities.The design can also be applied to other non-elliptical structures.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0302903)the National Natural Science Foundation of China(Grant Nos.11774422 and 11774424)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant Nos.14XNLQ03 and 16XNLQ01)
文摘By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor(DMS). For a typical compound Ba(Zn(0.944)Mn(0.056))2P2 with only spin doping, due to the superexchange interaction between Mn atoms and the lack of itinerant carriers, the short-range antiferromagnetic coupling dominates. Partially substituting K atoms for Ba atoms, which introduces itinerant hole carriers into the p orbitals of P atoms so as to link distant Mn moments with the spin-polarized hole carriers via the p–d hybridization between P and Mn atoms, is very crucial for the appearance of ferromagnetism in the compound. Furthermore, applying hydrostatic pressure first enhances and then decreases the ferromagnetic coupling in(Ba0.75 K0.25)(Zn(0.944)Mn(0.056))2P2 at a turning point around 15 GPa, which results from the combined effects of the pressure-induced variations of electron delocalization and p–d hybridization. Compared with the BaZn2 As2-based DMS, the substitution of P for As can modulate the magnetic coupling effectively. Both the results for BaZn2 P2-based and BaZn2As2-based DMSs demonstrate that the robust antiferromagnetic(AFM) coupling between the nearest Mn–Mn pairs bridged by anions is harmful to improving the performance of these Ⅱ–Ⅱ–Ⅴ based DMS materials.
基金supported by the National Natural Science Foundation of China under Grant No. 61001027the Fundamental Research Funds for the Central Universities under Grant No. ZYGX2010J046+2 种基金the Research on Millimeter Wave Waveguide-to-Microstrip Transition Technology under Grant No. H04010401W0409100supporting this research by the project of the Study on Electromagnetic Characteristics of Metamaterials under the Grant No. Y02002010401062the Foundation of Study on Characteristic of Chiral Metamaterials sponsored by the School of Physical Electronics, University of Electronic Science and Technology of China
文摘A novel millimeter-wave waveguide-to-microstrip transition based on magnetic-coupling is presented in this paper.The mode conversion of electromagnetic field is realized with the ring strip line of arbitrary shape in the E-plane of rectangular waveguide and the eccentric quasi-coaxial line,which is partially filled with media and consists of outer and inner rectangular conductors.The structure has the advantages of low loss,wide bandwidth,compact structure,and avoiding debug.From 27 GHz to 40 GHz,the experiment results show that the insertion loss is less than 1.2 dB and the return loss is better than 13.5 dB for the back-to-back transition with semicircle ring strip lines.
基金Project supported by the National Natural Science Foundation of China (50671008,50871014,50831002)
文摘Cr/SmCo/Cr thin films with Sm concentration of 37.7 at.% were deposited on glass substrates by magnetron sputtering. Measurement of magnetic properties showed that the SmCo film possessed good magnetic anisotropy, a high coercivity of 3019 kA/m and low magnetic exchange coupling. Microstructure analysis showed that crystallized SmCo5 magnetic phase, non-magnetic SmCo2 phase and Sm2Co7 phase co-existed in the film. The non-magnetic SmCo2 phase might function as isolator of SmCo grains, leading to a decrease of magnetic exchange coupling. Moreover, a Cr2O3 oxide layer which could protect the SmCo layer from oxidation formed at the surface of the Cr cap layer.
文摘The perovskite La_(0.67)Ca_(0.33)MnO_3/La_(0.67)Sr_(0.33)CoO_3/La_(0.67)Ca_(0.33)MnO_3 trilayers were fabricated by a facing-target sputtering technique and their magnetotransport properties were investigated. The magnetoresistance is dependent on spacer thickness and dramatically decreases when La_(0.67)Sr_(0.33)CoO_3 layer is thick enough because of its short-circuiting effect. Different from La_(0.67)Ca_(0.33)MnO_3 single layer, trilayer films with thin La_(0.67)Sr_(0.33)CoO_3 spacer have the enhanced metal-semiconductor transition temperature (T_(MS)) of La_(0.67)Ca_(0.33)MnO_3 layers. The magnetic coercivity H_C shows a nonmonotonic behavior with changing the spacer layer thickness at 230 K. The waist-like hysteresis indicates that there is an indirect exchange coupling between the top and bottom La_(0.67)Ca_(0.33)MnO_3 layers across the spacer La_(0.67)Sr_(0.33)CoO_3 layer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50371102 and 10334070), Hi-Tech Research and Development Program of China (Grant No 2004AA32G090), the Research Foundation of Shandong Provincial Education Department of China (Grant No 03A05), the Hong Kong Research Grant Council, and China Postdoctoral Science Foundation.
文摘The perovskite bilayers La0.67Ca0.33MnO3 (LCMO) (100 nm) / La0.67Sr0.33MnO3(LSMO) (100 nm) and LSMO (100 nm) / LCMO (100 nm) are fabricated by a facing-target sputtering technique. Their transport and magnetic properties are investigated. It is found that the transport properties between them are different obviously due to distinguishable structures, and the different lattice strains in both films result in the difference of metal-to-insulator transition. Only single-step magnetization loop appears in our bilayers from 5K to 320K, and the coercive force of LSMO/LCMO varies irregularly with a minimum ~ 2387A/m which is lower than that of LCMO and LSMO single layer films. The behaviour is explained by some magnetic coupling.
基金Project supported by the State Key Project of Research and Development of China(Grant No.2017YFA0206302)the National Nature Science Foundation of China(Grant Nos.51590883,51331006,and 51471167)the Chinese Academy of Sciences(Grant No.KJZD-EW-M05-3)
文摘Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/hard multilayer magnets including some new results and phenomena from an experimental point of view. According to the different component of the oriented hard phase in the nanocomposite soft/hard multilayer magnets, three types of magnets will be discussed:1) anisotropic Nd2Fe(14)B based nanocomposite multilayer magnets, 2) anisotropic SmCo5 based nanocomposite multilayer magnets, and 3) anisotropic rare-earth free based nanocomposite multilayer magnets. For each of them, the formation of the oriented hard phase, exchange coupling, coercivity mechanism, and magnetic properties of the corresponding anisotropic nanocomposite multilayer magnets are briefly reviewed, and then the prospect of realization of bulk magnets on new results of anisotropic nanocomposite multilayer magnets will be carried out.