期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Structure and magnetic properties of Osn (n=11~22) clusters 被引量:1
1
作者 张秀荣 张福星 +1 位作者 陈晨 袁爱华 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期199-207,共9页
The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order difference... The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer. 展开更多
关键词 density functional theory Osn clusters structure magnetic properties
下载PDF
Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering
2
作者 王丹 林兵兵 +7 位作者 申太鹏 吴君 豪富华 夏春潮 龚启勇 唐惠儒 宋彬 艾华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期427-434,共8页
Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized... Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters(DApolyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials(poly(ε-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine(DA) structure(DA-PCL2k,DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering(SAXS)was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization(Ms) and T2 relaxation of the aggregation, and lead to increased magnetic resonance(MR) relaxation properties with decreased interparticle spacing. 展开更多
关键词 nanoparticle clusters interparticle spacing ligand exchange magnetization
下载PDF
Detailed Mechanism and Engineering Applicability of Electrolytic Polymerization Aided by a Magnetic Field in Natural Rubber by Mechanical Approach for Sensing (Part 2): Other and Intrinsic Effects on MCF Rubber Property 被引量:1
3
作者 Kunio Shimada Norihiko Saga 《World Journal of Mechanics》 2016年第10期379-395,共17页
The same ordinary electrolytic polymerization of plastic-type polymer solution is applicable to natural rubber, with its C=C bonds, if a magnetic field and a filler are added. With the application of a magnetic field ... The same ordinary electrolytic polymerization of plastic-type polymer solution is applicable to natural rubber, with its C=C bonds, if a magnetic field and a filler are added. With the application of a magnetic field and the magnetic responsive fluid known as magnetic compound fluid (MCF), we have clarified the enhancement of the electrolytic polymerization of NR-latex and the growth of the thickness of vulcanized MCF rubber that results from the addition of a magnetic field. The present new method of MCF rubber vulcanization is effective for use in haptic sensors, which are used widely in various engineering applications. In the previous report, part 1 of this study, we investigated many experimental conditions under mechanical approach for sensing: magnetic field strength;applied voltage;electrodes gap;mass concentration, and the ingredients of the MCF. In the present sequential report, part 2, we investigate many other effects on electrolytic polymerization by the same mechanical approach for sensing as in part 1: the Mullins effect;the Piezo effect;vibration;kind of electrode;atmospheric gas. In particular, we clarify that the voltage generates spontaneously in the MCF rubber and that the MCF rubber becomes a Piezo element. These effects on the electrolytic polymerization as well as the effects of the experimental conditions will be useful in engineering applications. By taking the above-mentioned parameters and effects into account, MCF rubber that is electrolytically polymerized with the aid of a magnetic field, the use of MCF as a filler, and doping, can be useful in haptic sensor applications. In particular, the effectiveness of the Piezo element can be shown. 展开更多
关键词 Sensor Electrolytic Polymerization magnetic Field magnetic cluster Natural Rubber
下载PDF
Detailed Mechanism and Engineering Applicability of Electrolytic Polymerization Aided by a Magnetic Field in Natural Rubber by Mechanical Approach for Sensing (Part 1): The Effect of Experimental Conditions on Electrolytic Polymerization 被引量:1
4
作者 Kunio Shimada Norihiko Saga 《World Journal of Mechanics》 2016年第10期357-378,共23页
Ordinary electrolytic polymerization has involved plastic-type polymer solutions. Rubber, especially natural rubber, is one such polymer solution. Rubber has not been focused on until recently due to the fact that ele... Ordinary electrolytic polymerization has involved plastic-type polymer solutions. Rubber, especially natural rubber, is one such polymer solution. Rubber has not been focused on until recently due to the fact that electrolytic polymerization has only a very small effect on rubber. However, when we focus on the C=C bonds of natural rubber, the same electrolytic polymerization is applicable to be enlarged on the natural rubber if a magnetic field and a filler are added. With the application of a magnetic field and a magnetic responsive fluid such as magnetic compound fluid (MCF), the effect of electrolytic polymerization on NR-latex such as plastic-type polymer solutions is enhanced, and the thickness of the vulcanized MCF rubber grows in a short time. The present new method of vulcanization of MCF rubber is effective enough that it is widely used in haptic sensors in various engineering applications. In the present report, as mechanical approach for the sensing, by measuring the temperature under electrolytic polymerization, by investigating the electric and dynamic characteristics, and by observing the magnified appearance of the MCF rubber, we clarified the extrinsic effects of many experimental conditions, including magnetic field strength, applied voltage, the electrodes gap, mass concentration, and the ingredients of the MCF. This report is Part 1, to be followed by another sequential report, Part 2, in which other intrinsic effects on the characteristics are dealt with. The experimental conditions used and the results obtained in the present report provide valuable data that will be useful in the making of MCF rubber. 展开更多
关键词 SENSOR Electrolytic Polymerization magnetic Field magnetic cluster Natural Rubber
下载PDF
<i>γ</i>-Ray Irradiation Effect on MCF Rubber Solar Cells with both Photovoltaics and Sensing Involving Semiconductors Fabricated under Magnetic and Electric Fields
5
作者 Kunio Shimada Ryoju Kato +2 位作者 Ryo Ikeda Hiroshige Kikura Hideharu Takahashi 《World Journal of Mechanics》 2020年第8期95-119,共25页
For cases in which a robot with installed solar cells and a sensor operates in a nuclear reactor building or in space for extravehicular activity, we require elastic and extensible solar cells. More than two different... For cases in which a robot with installed solar cells and a sensor operates in a nuclear reactor building or in space for extravehicular activity, we require elastic and extensible solar cells. More than two different types of sensing are also required, minimally with photovoltaics and built-in electricity. Magnetic compound fluid (MCF) rubber solar cells are made of rubber, so they are elastic and extensible as well as sensitive. To achieve flexibility and an effective photovoltaic effect, MCF rubber solar cells must include both soluble and insoluble rubbers, Fe<sub>3</sub>O<sub>4</sub>, TiO<sub>2</sub>, Na<sub>2</sub>WO<sub>4</sub>∙2H<sub>2</sub>O, etc. On the basis of this constitution, we propose a consummate fabrication process for MCF rubber solar cells. The characteristics of these cells result from the semiconductor-like role of the molecules of TiO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub>, Ni, Na<sub>2</sub>WO<sub>4</sub>∙2H<sub>2</sub>O, polydimethylsiloxane (PDMS), natural rubber (NR), oleic acid, polyvinyl alcohol (PVA), water and magnetic cluster involved in the MCF rubber. Their tendencies can be deduced by synthesizing knowledge about the enhancement of the reverse-bias saturation current <em>I</em><sub><em>S</em></sub> and the diode ideality factor <em>N</em>, with conventional knowledge about the semiconductor affected by <em>γ</em>-irradiation and the attenuation of the photon energy of <em>γ</em>-rays. 展开更多
关键词 γ-Irradiation Irradiation Effect RUBBER magnetic Compound Fluid (MCF) Electrolytic Polymerization Photovoltaics Solar Cells magnetic Fluid Natural Rubber Silicone Rubber Aggregation magnetic Field Sensor Piezo-Electricity Built-in Electricity Induced Voltage Adhesion magnetic cluster Robot
下载PDF
Development of Novel Magnetic Responsive Intelligent Fluid, Hybrid Fluid (HF), for Production of Soft and Tactile Rubber
6
作者 Kunio Shimada Ryo Ikeda +1 位作者 Hiroshige Kikura Hideharu Takahashi 《World Journal of Mechanics》 2021年第10期187-203,共17页
For the purpose of the replacement of Magnetic Fluid (MF) which is effective in the production of an artificial soft and tactile skin for the robot, etc. by utilizing a rubber solidification method with electrolytic p... For the purpose of the replacement of Magnetic Fluid (MF) which is effective in the production of an artificial soft and tactile skin for the robot, etc. by utilizing a rubber solidification method with electrolytic polymerization, we proposed a novel magnetic responsive intelligent fluid, Hybrid Fluid (HF). HF is structured with water, kerosene, silicon oil having Polydimethylsiloxane (PDMS) and Polyvinyl Alcohol (PVA) as well as magnetic particles and surfactant. The state of HF changes as jelly or fluid by their rates of the constituents and motion style. In the present paper, we presented the characteristics of HF: the viscosity and the magnetization are respectively equivalent to those of other magnetic responsive fluids, MF and their solvents. For the structure, HF is soluble simultaneously with both diene and non-diene rubbers. The diene rubber such as Natural Rubber (NR) or Chloroprene (CR) has a role in the feasibility of electrolytic polymerization and the non-diene rubber such as silicon oil rubber (Q) has a role in defense against deterioration. Therefore, the electrolytically polymerized HF rubber by mixing NR, CR as well as Q is effective for the artificial soft and tactile skin. It is responsive to pressure and has optimal property on piezoelectricity in the case of the mixture of Ni particles as filler. HF is effective in the production of the artificial soft and tactile skin made of rubber. 展开更多
关键词 Intelligent Fluid Hybrid Fluid (HF) magnetic Fluid magnetic Compound Fluid (MCF) Piezoelectric Effect RUBBER Artificial Skin Sensor Electrolytic Polymerization magnetic cluster magnetic Field Artificial Skin Robot
下载PDF
Two New Complexes with the Same(3,8)-Connected tfz-d Topology Based on [Co4(μ3-OH)2] Clusters and Different Aromatic Multicarboxylic Acids 被引量:1
7
作者 屠长征 缪娇娇 +3 位作者 侯能邦 陈广 李俊莉 杨玉亭 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期903-913,共11页
Two new metal-organic frameworks(MOFs), namely, [Co_2(L_1)(bix)(μ_3-OH)]·2H_2O(1) and [Co_2(L_2)(bix)(μ_3-OH)]·2.5H_2O(2)(H_3L_1 = 5-oxyacetate isophthalic acid, H_3L_2 = 3,5-bis-oxyacet... Two new metal-organic frameworks(MOFs), namely, [Co_2(L_1)(bix)(μ_3-OH)]·2H_2O(1) and [Co_2(L_2)(bix)(μ_3-OH)]·2.5H_2O(2)(H_3L_1 = 5-oxyacetate isophthalic acid, H_3L_2 = 3,5-bis-oxyacetate-benzoic acid, bix = 1,4-bis(imidazol-1-ylmethyl)benzene), have been synthesized under hydrothermal conditions. Their structures were determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, IR spectra, and powder X-ray diffraction(PXRD) analysis. Both complexes 1 and 2 demonstrate identical three-dimensional(3D)(3,8)-connected tfz-d nets with(4~3)_2(4~6·6^(18)·8~4) topologies, where the tetranuclear [Co_4(μ_3-OH)_2] clusters act as 8-connected nodes and aromatic multicarboxylic ligands as 3-connected nodes. The results show that the ligands with different geometrical conformations can form products with the same topological structures. Their thermal and magnetic properties were also investigated. 展开更多
关键词 Co(Ⅱ) cluster (3 8)-connected net crystal structure magnetic property
下载PDF
Inhomogeneous-strain-induced magnetic vortex cluster in one-dimensional manganite wire 被引量:1
8
作者 Iftikhar Ahmed Malik Houbing Huang +14 位作者 Yu Wang Xueyun Wang Cui Xiao Yuanwei Sun Rizwan Ullah Yuelin Zhang Jing Wang Muhammad Abdullah Malik Irfan Ahmed Changmin Xiong Simone Finizio Mathias Klaui Peng Gao Jie Wang Jinxing Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第3期201-207,共7页
近几年的研究表明,具有强电子关联特性的锰氧化物晶体在自旋电子学领域具有潜在的应用价值.尤其该材料介观尺度的磁畴结构可以影响其许多新奇的物理特性,这些性质正被逐一揭示:例如高频自旋波的传播和巨拓扑霍尔效应等.在本项研究中,作... 近几年的研究表明,具有强电子关联特性的锰氧化物晶体在自旋电子学领域具有潜在的应用价值.尤其该材料介观尺度的磁畴结构可以影响其许多新奇的物理特性,这些性质正被逐一揭示:例如高频自旋波的传播和巨拓扑霍尔效应等.在本项研究中,作者发现在单晶La0.67Sr0.33MnO3纳米线中具有磁通闭合自旋结构的磁涡旋团簇.具体来说,当La0.67Sr0.33MnO3纳米线的宽度小于1.0μm时,结合原位磁阻测量,在4 K下通过磁力显微镜直接观察到该纳米线的磁畴从指向面外的磁矩排列转变到磁通闭合的涡旋团簇状态.通过相场模拟表明,该锰氧化物纳米线中的不均匀应变以及形状各向异性是导致其磁通闭合的自旋结构稳定存在的关键因素.这项工作为理解和操控强关联体系中的新奇自旋结构提供了新的视角. 展开更多
关键词 magnetic vortex cluster Inhomogeneous strain One-dimensional manganites Epitaxial thin films Cryo-Temperature MFM
原文传递
Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core-shell particles 被引量:2
9
作者 Chandrababu Rejeeth Xuechao Pang +8 位作者 Ru Zhang Wei Xu Xuming Sun Bin Liu Jiatao Lou Jingjing Wan Hongchen Gu Wei Yan Kun Qian 《Nano Research》 SCIE EI CAS CSCD 2018年第1期68-79,共12页
Serum biomarkers in the form of proteins (e.g. cluster of differentiation-44 (CD44)) have been demonstrated to have high clinical sensitivity and specificity for disease diagnosis and prognosis. Owing to the high ... Serum biomarkers in the form of proteins (e.g. cluster of differentiation-44 (CD44)) have been demonstrated to have high clinical sensitivity and specificity for disease diagnosis and prognosis. Owing to the high sample complexity and low molecular abundance in serum, the detection and profiling of biomarkers rely on efficient extraction by materials and devices, mostly using immunoassays via antibody-antigen recognition. Antibody-free approaches are promising and need to be developed for real-case applications in serum to address the limitations of antibody-based techniques in terms of robustness, expense, and throughput. In this work, we demonstrated a novel approach using hyaluronic acid (HA)-modified materials/devices for the extraction, detection, and profiling of serum biomarkers via ligand-protein interactions. We constructed Fe304@SiOa@HA particles with different sizes through layer-by-layer assembly and for the first time applied HA-functionalized particles in the facile extraction and sequence identification of CD44 in serum by mass spectrometry. We also first validated HA-CD44 binding through electrochemical sensing using HA- modified electrodes in both standard solutions and diluted serum samples, achieving a detection limit of -0.6 ng/mL and a linear response range from I ng/mL to 10 ~tg/mL. Furthermore, we performed profiling of HA-binding serum proteome, providing a new preliminary benchmark for the construction of future databases, and we investigated selected surface chemistries of particles for the capture of proteins in serum. Our work not only resulted in the development of a platform technology for CD44 extraction/detection and HA-binding proteome identification, but also guided the design of ligand affinity-based approaches for antibody-free analysis of serum biomarkers towards diagnostic applications. 展开更多
关键词 ligand-protein interaction magnetic particles serum biomarkers cluster of differentiation44(CD44) sensors mass spectrometry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部