The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The accel...The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.展开更多
Experiment is carried out on the accelerator Sinus-700 to investigate the Relativistic Backward Wave Oscillator (RBWO) with a periodic guiding magnetic field. When the strength of the guiding magnetic field, whose p...Experiment is carried out on the accelerator Sinus-700 to investigate the Relativistic Backward Wave Oscillator (RBWO) with a periodic guiding magnetic field. When the strength of the guiding magnetic field, whose period is 4.6 cm, is 0.54 T, a microwave output power of 0.95 GW at 9.1 GHz microwave frequency is achieved. It is shown that the RBWO with a periodic guiding magnetic field is feasible.展开更多
A simulation is carried out to investigate a relativistic backward wave oscillator (RBWO) with a sinusoidal guiding magnetic field. In the numerical simulation, a microwave output power of 1.33 GW at 9.57 GHz microw...A simulation is carried out to investigate a relativistic backward wave oscillator (RBWO) with a sinusoidal guiding magnetic field. In the numerical simulation, a microwave output power of 1.33 GW at 9.57 GHz microwave frequency with 33% conversion efficiency is achieved. It is a significant attempt which is helpful for developing a practical high power microwave (HPM) source guided by a permanent magnetic field.展开更多
Compactness and miniaturization have become increasingly important in the development of high-power microwave devices.Based on this rising demand,a novel C-band coaxial transit-time oscillator(TTO)with a low external ...Compactness and miniaturization have become increasingly important in the development of high-power microwave devices.Based on this rising demand,a novel C-band coaxial transit-time oscillator(TTO)with a low external guiding magnetic field is proposed and analyzed.The proposed device has the following advantages:simple structure,short axial length,high power conversion efficiency,and low external guiding magnetic field,which are of great significance for developing the compact and miniaturized high-power microwave devices.The application of a shorter axial length is made possible by the use of a transit radiation mechanism.Also,loading the opening foil symmetrically to both ends of the buncher helps reduce the external magnetic field of the proposed device.Unlike traditional foils,the proposed opening foil has a circular-hole;therefore,the electron beam will not bombard the conductive foil to generate plasma.This makes it possible to realize long pulse and high repetition rate operation of the device in future experiments.Through numerical calculation and PIC particle simulation,the stability of the intense relativistic electron beam(IREB)and the saturation time of the device are improved by using the conductive foil.The voltage and current of the diode are 548 kV and 11.4 kA,respectively.Under a 0.4-T external guiding magnetic field,a C-band output microwave with a frequency of 4.27 GHz and power of 1.88 GW can be generated.The power conversion efficiency of the proposed device is about 30%.展开更多
From the linear Vlasov equation, the theoretical investigation on relativistic backward wave oscillator is performed. The relationship between the microwave power and the guiding magnetic field, which accords with the...From the linear Vlasov equation, the theoretical investigation on relativistic backward wave oscillator is performed. The relationship between the microwave power and the guiding magnetic field, which accords with the results of the particle simulation and experiments, is deduced.展开更多
基金supported by National Natural Science Foundation of China(Nos.51275029,51102007 and 11275007)
文摘The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.
文摘Experiment is carried out on the accelerator Sinus-700 to investigate the Relativistic Backward Wave Oscillator (RBWO) with a periodic guiding magnetic field. When the strength of the guiding magnetic field, whose period is 4.6 cm, is 0.54 T, a microwave output power of 0.95 GW at 9.1 GHz microwave frequency is achieved. It is shown that the RBWO with a periodic guiding magnetic field is feasible.
文摘A simulation is carried out to investigate a relativistic backward wave oscillator (RBWO) with a sinusoidal guiding magnetic field. In the numerical simulation, a microwave output power of 1.33 GW at 9.57 GHz microwave frequency with 33% conversion efficiency is achieved. It is a significant attempt which is helpful for developing a practical high power microwave (HPM) source guided by a permanent magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61701516).
文摘Compactness and miniaturization have become increasingly important in the development of high-power microwave devices.Based on this rising demand,a novel C-band coaxial transit-time oscillator(TTO)with a low external guiding magnetic field is proposed and analyzed.The proposed device has the following advantages:simple structure,short axial length,high power conversion efficiency,and low external guiding magnetic field,which are of great significance for developing the compact and miniaturized high-power microwave devices.The application of a shorter axial length is made possible by the use of a transit radiation mechanism.Also,loading the opening foil symmetrically to both ends of the buncher helps reduce the external magnetic field of the proposed device.Unlike traditional foils,the proposed opening foil has a circular-hole;therefore,the electron beam will not bombard the conductive foil to generate plasma.This makes it possible to realize long pulse and high repetition rate operation of the device in future experiments.Through numerical calculation and PIC particle simulation,the stability of the intense relativistic electron beam(IREB)and the saturation time of the device are improved by using the conductive foil.The voltage and current of the diode are 548 kV and 11.4 kA,respectively.Under a 0.4-T external guiding magnetic field,a C-band output microwave with a frequency of 4.27 GHz and power of 1.88 GW can be generated.The power conversion efficiency of the proposed device is about 30%.
基金State's High-Technology Research and Development Project(863)
文摘From the linear Vlasov equation, the theoretical investigation on relativistic backward wave oscillator is performed. The relationship between the microwave power and the guiding magnetic field, which accords with the results of the particle simulation and experiments, is deduced.