Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotati...Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotation tests highlight that the MSA improved flotation recovery and kinetics of pyrite ore while causing some loss in selectivity,and in the presences of the polyacrylamide for coal and starch for hematite the agglomeration flotation was further strengthened due to the synergetic effect between the flocculants and magnetic seeds.Magnetism analyses and calculation confirmed the adsorption of magnetic seeds onto minerals,resulting in a decreased threshold magnetic field intensity for the MSA to happen.Then atomic force microscope(AFM)study found that there exists a long range force between magnetic seeds and minerals,which facilitates the adsorption of magnetic seeds on minerals.FTIR shows both the polyacrylamide and starch adsorbed onto minerals and magnetic seeds,thus acting as the bridging media between minerals and magnetic seeds,intensifying the agglomeration in flotation.Surface characterization of the MSA was understood by SEM imaging,and models of the MSA were proposed.展开更多
Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply...Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.展开更多
Pyrite is a special weakly magnetic mineral containing Fe(II). Its self-magnetization only by adjusting slurry temperatureand pH value was able to enhance its magnetism, producing the so-called the magnetized pyrite, ...Pyrite is a special weakly magnetic mineral containing Fe(II). Its self-magnetization only by adjusting slurry temperatureand pH value was able to enhance its magnetism, producing the so-called the magnetized pyrite, which was further used as magneticseeds in the flotation of pyrite ore to promote flotation recovery. Tests, such as self-magnetization, vibrating sample magnetometer(VSM), XPS, size analysis and flotation were carried out. The optimal conditions of the pyrite self-magnetization were pulp pH of11.81 and temperature of 65 °C. The magnetized pyrite was characteristic of the valence change of elemental iron, resulting instronger magnetism of the magnetized pyrite than that of the original pyrite. Then, this magnetized pyrite was applied to the magneticseeding flotation (MSF) of pyrite ore. It was found that the recovery of pyrite flotation grew with the increase of magneticsusceptibility of the magnetic seeds?the magnetized pyrite; and the proper dosage of the magnetized pyrite was 100 g/t. The reasonbehind the increased recovery lies in that the magnetized pyrite promoted the magnetic agglomeration between fine pyrite particles;and the fact that the stronger the magnetism of the magnetized pyrite, the larger the aggregate size, indicates that the agglomeration issomewhat in line with the flotation, also confirming that the MSF is more suitable for fine particles than traditional flotation.展开更多
基金Project(51274256)supported by the National Natural Science Foundation of China
文摘Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotation tests highlight that the MSA improved flotation recovery and kinetics of pyrite ore while causing some loss in selectivity,and in the presences of the polyacrylamide for coal and starch for hematite the agglomeration flotation was further strengthened due to the synergetic effect between the flocculants and magnetic seeds.Magnetism analyses and calculation confirmed the adsorption of magnetic seeds onto minerals,resulting in a decreased threshold magnetic field intensity for the MSA to happen.Then atomic force microscope(AFM)study found that there exists a long range force between magnetic seeds and minerals,which facilitates the adsorption of magnetic seeds on minerals.FTIR shows both the polyacrylamide and starch adsorbed onto minerals and magnetic seeds,thus acting as the bridging media between minerals and magnetic seeds,intensifying the agglomeration in flotation.Surface characterization of the MSA was understood by SEM imaging,and models of the MSA were proposed.
文摘Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.
基金Project(51274256)supported by the National Natural Science Foundation of China
文摘Pyrite is a special weakly magnetic mineral containing Fe(II). Its self-magnetization only by adjusting slurry temperatureand pH value was able to enhance its magnetism, producing the so-called the magnetized pyrite, which was further used as magneticseeds in the flotation of pyrite ore to promote flotation recovery. Tests, such as self-magnetization, vibrating sample magnetometer(VSM), XPS, size analysis and flotation were carried out. The optimal conditions of the pyrite self-magnetization were pulp pH of11.81 and temperature of 65 °C. The magnetized pyrite was characteristic of the valence change of elemental iron, resulting instronger magnetism of the magnetized pyrite than that of the original pyrite. Then, this magnetized pyrite was applied to the magneticseeding flotation (MSF) of pyrite ore. It was found that the recovery of pyrite flotation grew with the increase of magneticsusceptibility of the magnetic seeds?the magnetized pyrite; and the proper dosage of the magnetized pyrite was 100 g/t. The reasonbehind the increased recovery lies in that the magnetized pyrite promoted the magnetic agglomeration between fine pyrite particles;and the fact that the stronger the magnetism of the magnetized pyrite, the larger the aggregate size, indicates that the agglomeration issomewhat in line with the flotation, also confirming that the MSF is more suitable for fine particles than traditional flotation.