The quantum anomalous Hall(QAH) effect has attracted enormous attention since it can induce topologically protected conducting edge states in an intrinsic insulating material. For practical quantum applications, the m...The quantum anomalous Hall(QAH) effect has attracted enormous attention since it can induce topologically protected conducting edge states in an intrinsic insulating material. For practical quantum applications, the main obstacle is the non-existent room temperature QAH systems, especially with both large topological band gap and robust ferromagnetic order. Here, according to first-principles calculations, we predict the realization of the room temperature QAH effect in a two-dimensional(2D) honeycomb lattice, RuCS_(3) with a non-zero Chern number of C = 1. Especially, the nontrivial topology band gap reaches up to 336 me V for RuCS_(3). Moreover, we find that RuCS_(3) has a large magnetic anisotropy energy(2.065 me V) and high Curie temperature(696 K). We further find that the non-trivial topological properties are robust against the biaxial strain. The robust topological and magnetic properties make RuCS_(3) have great applications in room temperature spintronics and nanoelectronics.展开更多
A two-dimensional(2D) high-temperature ferromagnetic half-metal whose magnetic and electronic properties can be flexibly tuned is required for the application of new spintronics devices. In this paper, we predict a st...A two-dimensional(2D) high-temperature ferromagnetic half-metal whose magnetic and electronic properties can be flexibly tuned is required for the application of new spintronics devices. In this paper, we predict a stable Ir_(2)TeI_(2) monolayer with half-metallicity by systematical first-principles calculations. Its ground state is found to exhibit inherent ferromagnetism and strong out-of-plane magnetic anisotropy of up to 1.024 meV per unit cell. The Curie temperature is estimated to be 293 K based on Monte Carlo simulation. Interestingly, a switch of magnetic axis between in-plane and out-of-plane is achievable under hole and electron doping, which allows for the effective control of spin injection/detection in such 2D systems. Furthermore, the employment of biaxial strain can realize the transition between ferromagnetic and antiferromagnetic states. These findings not only broaden the scope of 2D half-metal materials but they also provide an ideal platform for future applications of multifunctional spintronic devices.展开更多
Two-dimensional(2D) CrI_(3) is a ferromagnetic semiconductor with potential for applications in spintronics. However,its low Curie temperature(T_(c)) hinders realistic applications of CrI3. Based on first-principles c...Two-dimensional(2D) CrI_(3) is a ferromagnetic semiconductor with potential for applications in spintronics. However,its low Curie temperature(T_(c)) hinders realistic applications of CrI3. Based on first-principles calculations, 5d transition metal(TM) atom doping of CrI_(3)(TM@CrI_(3)) is a universally effective way to increase T_(c), which stems from the increased magnetic moment induced by doping with TM atoms. T_(c) of W@CrI_(3) reaches 254 K, nearly six times higher than that of the host CrI_(3). When the doping concentration of W atoms is increased to above 5.9%, W@CrI_(3) shows room-temperature ferromagnetism. Intriguingly, the large magnetic anisotropy energy of W@CrI_(3) can stabilize the long-range ferromagnetic order. Moreover, TM@CrI_(3) has a strong ferromagnetic stability. All TM@CrI_(3) change from a semiconductor to a halfmetal, except doping with Au atom. These results provide information relevant to potential applications of CrI_(3) monolayers in spintronics.展开更多
Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphe...Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphene/CoBr_(2)(Gr/CoBr_(2))heterostructures and find that an enhancement of in-plane magnetic anisotropy(IMA)energy in monolayer CoBr_(2) can be accomplished by reducing the interlayer distance of the vdW heterostructures.In addition,we clarify that the enhancement of IMA energy primarily results from two factors:one is the weakness of the Co-d_(xy) and Co-d_(x^(2)-y^(2)) orbital hybridization and the other is the augmentation of the Co-d_(yz) and Co-d_(z)2 orbital hybridization.Meanwhile,calculation results suggest that the Kosterlitz–Thouless phase transition temperature(TKT)of a 2D XY magnet Gr/CoBr_(2)(23.8 K)is higher than that of a 2D XY monolayer CoBr_(2)(1.35 K).By decreasing the interlayer distances,the proximity effect is more pronounced and band splitting appears.Moreover,by taking into account spin–orbit coupling,a band gap of approximately 14.3 meV and the quantum anomalous Hall effect(QAHE)are attained by decreasing the interlayer distance by 1.0 A.Inspired by the above conclusions,we design a topological field transistor device model.Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials,providing a pathway for the development of new low-power spintronic devices.展开更多
Materials with large intrinsic valley splitting and high Curie temperature are a huge advantage for studying valleytronics and practical applications.In this work,using first-principles calculations,a new Janus TaNF m...Materials with large intrinsic valley splitting and high Curie temperature are a huge advantage for studying valleytronics and practical applications.In this work,using first-principles calculations,a new Janus TaNF monolayer is predicted to exhibit excellent piezoelectric properties and intrinsic valley splitting,resulting from the spontaneous spin polarization,the spatial inversion symmetry breaking and strong spin-orbit coupling(SOC).TaNF is also a potential two-dimensional(2D)magnetic material due to its high Curie temperature and large magnetic anisotropy energy.The effective control of the band gap of TaNF can be achieved by biaxial strain,which can transform TaNF monolayer from semiconductor to semi-metal.The magnitude of valley splitting at the CBM can be effectively tuned by biaxial strain due to the changes of orbital composition at the valleys.The magnetic anisotropy energy(MAE)can be manipulated by changing the energy and occupation(unoccupation)states of d orbital compositions through biaxial strain.In addition,Curie temperature reaches 373 K under only−3%biaxial strain,indicating that Janus TaNF monolayer can be used at high temperatures for spintronic and valleytronic devices.展开更多
Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices.Based on first-principles calculations,we have investigated a novel two-dimensiona...Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices.Based on first-principles calculations,we have investigated a novel two-dimensional CrS_(2) phase with an orthorhombic lattice.Our results suggest that it is stable in dynamics,thermodynamics,and mechanics.The ground state of monolayer orthorhombic CrS_(2) is both ferromagnetic and half-metallic,with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV.This room-temperature ferromagnetism and halfmetallicity can maintain stability against a strong biaxial strain ranging from–5%to 5%.Meanwhile,increasing strain can significantly maintain the out-of-plane magnetic anisotropy.A density of states analysis,together with the orbital-resolved magnetic anisotropy energy,has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms.Our results suggest the monolayer orthorhombic CrS_(2) is an ideal candidate for future spintronics.展开更多
基金the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA041)the Taishan Scholar Project of Shandong Province, China (Grant No. ts20190939)+1 种基金the National Natural Science Foundation of China (Grant No. 62071200)the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020QA052)。
文摘The quantum anomalous Hall(QAH) effect has attracted enormous attention since it can induce topologically protected conducting edge states in an intrinsic insulating material. For practical quantum applications, the main obstacle is the non-existent room temperature QAH systems, especially with both large topological band gap and robust ferromagnetic order. Here, according to first-principles calculations, we predict the realization of the room temperature QAH effect in a two-dimensional(2D) honeycomb lattice, RuCS_(3) with a non-zero Chern number of C = 1. Especially, the nontrivial topology band gap reaches up to 336 me V for RuCS_(3). Moreover, we find that RuCS_(3) has a large magnetic anisotropy energy(2.065 me V) and high Curie temperature(696 K). We further find that the non-trivial topological properties are robust against the biaxial strain. The robust topological and magnetic properties make RuCS_(3) have great applications in room temperature spintronics and nanoelectronics.
基金supported by the Taishan Scholar Program of Shandong Province(No.ts20190939)National Natural Science Foundation of China(Grant No.62071200,12004137,11804116,52173283)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2018MA035,ZR2020QA052,ZR2019MA041)Independent Cultivation Program of Innovat ion Team of Jinan City(Grant No.2021GXRC043)。
文摘A two-dimensional(2D) high-temperature ferromagnetic half-metal whose magnetic and electronic properties can be flexibly tuned is required for the application of new spintronics devices. In this paper, we predict a stable Ir_(2)TeI_(2) monolayer with half-metallicity by systematical first-principles calculations. Its ground state is found to exhibit inherent ferromagnetism and strong out-of-plane magnetic anisotropy of up to 1.024 meV per unit cell. The Curie temperature is estimated to be 293 K based on Monte Carlo simulation. Interestingly, a switch of magnetic axis between in-plane and out-of-plane is achievable under hole and electron doping, which allows for the effective control of spin injection/detection in such 2D systems. Furthermore, the employment of biaxial strain can realize the transition between ferromagnetic and antiferromagnetic states. These findings not only broaden the scope of 2D half-metal materials but they also provide an ideal platform for future applications of multifunctional spintronic devices.
文摘Two-dimensional(2D) CrI_(3) is a ferromagnetic semiconductor with potential for applications in spintronics. However,its low Curie temperature(T_(c)) hinders realistic applications of CrI3. Based on first-principles calculations, 5d transition metal(TM) atom doping of CrI_(3)(TM@CrI_(3)) is a universally effective way to increase T_(c), which stems from the increased magnetic moment induced by doping with TM atoms. T_(c) of W@CrI_(3) reaches 254 K, nearly six times higher than that of the host CrI_(3). When the doping concentration of W atoms is increased to above 5.9%, W@CrI_(3) shows room-temperature ferromagnetism. Intriguingly, the large magnetic anisotropy energy of W@CrI_(3) can stabilize the long-range ferromagnetic order. Moreover, TM@CrI_(3) has a strong ferromagnetic stability. All TM@CrI_(3) change from a semiconductor to a halfmetal, except doping with Au atom. These results provide information relevant to potential applications of CrI_(3) monolayers in spintronics.
基金Project supported by the National Natural Science Foundation of China(Grant No.52173283)Taishan Scholar Program of Shandong Province(Grant No.ts20190939)Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043).
文摘Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphene/CoBr_(2)(Gr/CoBr_(2))heterostructures and find that an enhancement of in-plane magnetic anisotropy(IMA)energy in monolayer CoBr_(2) can be accomplished by reducing the interlayer distance of the vdW heterostructures.In addition,we clarify that the enhancement of IMA energy primarily results from two factors:one is the weakness of the Co-d_(xy) and Co-d_(x^(2)-y^(2)) orbital hybridization and the other is the augmentation of the Co-d_(yz) and Co-d_(z)2 orbital hybridization.Meanwhile,calculation results suggest that the Kosterlitz–Thouless phase transition temperature(TKT)of a 2D XY magnet Gr/CoBr_(2)(23.8 K)is higher than that of a 2D XY monolayer CoBr_(2)(1.35 K).By decreasing the interlayer distances,the proximity effect is more pronounced and band splitting appears.Moreover,by taking into account spin–orbit coupling,a band gap of approximately 14.3 meV and the quantum anomalous Hall effect(QAHE)are attained by decreasing the interlayer distance by 1.0 A.Inspired by the above conclusions,we design a topological field transistor device model.Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials,providing a pathway for the development of new low-power spintronic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.52073308 and 11804395)the Distinguished Young Scholar Foundation of Hunan Province(Grant No.2015JJ1020)+3 种基金the Central South University Research Fund for Innovation-driven program(Grant No.2015CXS1035)the Central South University Research Fund for Sheng-hua Scholars(Grant No.502033019)China Postdoctoral Science Foundation(Grant No.2022TQ0379)the State Key Laboratory of Powder Metallurgy at Central South University,and the Fundamental Research Funds for the Central Universities of Central South University.
文摘Materials with large intrinsic valley splitting and high Curie temperature are a huge advantage for studying valleytronics and practical applications.In this work,using first-principles calculations,a new Janus TaNF monolayer is predicted to exhibit excellent piezoelectric properties and intrinsic valley splitting,resulting from the spontaneous spin polarization,the spatial inversion symmetry breaking and strong spin-orbit coupling(SOC).TaNF is also a potential two-dimensional(2D)magnetic material due to its high Curie temperature and large magnetic anisotropy energy.The effective control of the band gap of TaNF can be achieved by biaxial strain,which can transform TaNF monolayer from semiconductor to semi-metal.The magnitude of valley splitting at the CBM can be effectively tuned by biaxial strain due to the changes of orbital composition at the valleys.The magnetic anisotropy energy(MAE)can be manipulated by changing the energy and occupation(unoccupation)states of d orbital compositions through biaxial strain.In addition,Curie temperature reaches 373 K under only−3%biaxial strain,indicating that Janus TaNF monolayer can be used at high temperatures for spintronic and valleytronic devices.
基金This work was financially supported by the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region(Grant No.2013D01D03)the National Natural Science Foundation of China(Grant Nos.52073308 and 12004439)+5 种基金the Central South University Research Fund for Sheng Hua Scholars(Grant No.502033019)Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX20190107)the State Key Laboratory of Powder Metallurgy at Central South University,the Fundamental Research Funds for the Central Universities of Central South University,the Tianchi-Talent Project for Young Doctors of Xinjiang Uygur Autonomous Region(No.51052300570)the National Science Foundation of Hunan Province(No.2021JJ30864)the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region(Grant No.2023D01D03)the Outstanding Doctoral Student Innovation Project of Xinjiang University(No.XJU2023BS028).
文摘Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices.Based on first-principles calculations,we have investigated a novel two-dimensional CrS_(2) phase with an orthorhombic lattice.Our results suggest that it is stable in dynamics,thermodynamics,and mechanics.The ground state of monolayer orthorhombic CrS_(2) is both ferromagnetic and half-metallic,with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV.This room-temperature ferromagnetism and halfmetallicity can maintain stability against a strong biaxial strain ranging from–5%to 5%.Meanwhile,increasing strain can significantly maintain the out-of-plane magnetic anisotropy.A density of states analysis,together with the orbital-resolved magnetic anisotropy energy,has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms.Our results suggest the monolayer orthorhombic CrS_(2) is an ideal candidate for future spintronics.