An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of e...An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of eutectic Al-Si alloy have been investigated experimentally. It is found that the eutectic structure has been refined by solely imposing high magnetic field while it is coarsened under the electromagnetic vibration. Furthermore, polyhedral Si grains and non-dendritic α-Al appeared when the electromagnetic vibration strength was strong enough. The refining of eutectic structure is attributed to the decrease of diffusion coefficient caused by the strong magnetic field. The coarseness of eutectic structure may be attributed to the convection caused by electromagnetic vibration. Strong convection may break co-operative growth of eutectic phases to form polyhedral Si grains and non-dendritic α-Al.展开更多
The effect of magnetic field on the plane vibrations for an elastodynamic orthotropic sphere is studied. Equations of elastodynamic problems of the orthotropic hollow sphere in terms of displacement are solved. The nu...The effect of magnetic field on the plane vibrations for an elastodynamic orthotropic sphere is studied. Equations of elastodynamic problems of the orthotropic hollow sphere in terms of displacement are solved. The numerical results of the frequency equations in the presence of magnetic field are discussed and shown graphically. Compar-isons are made with the result in the presence and absence of magnetic field in the case of orthotropic sphere. The results show that the effect of magnetic field is very pronounced.展开更多
The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the ro...The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the rotor since the air-gap distribution between the rotor and the stator is not uniform. This electromagnetic load is a nonlinear function of the distance between the geometric centers of the rotor and the stator. The nonlinear equation of motion is obtained by the inclusion of the nonlinearity in the inertia, the curvature, and the electromagnetic load. After discretization of the governing partial differential equations by the Galerkin method, the multiple-scale perturbation method is used to derive the approximate solutions to the equations. In the numerical results, the effects of the electromagnetic parameter load, the damping coefficient, the amplitude of the initial displacement, the mass moment of inertia, and the rotation speed on the linear and nonlinear backward and forward frequencies are investigated. The results show that the magnetic field has significant effects on the nonlinear frequency of oscillation.展开更多
The resonance frequencies and stability of a nanobeam in a longitudinal magnetic field are investigated.To this aim,a three dimensional beam model is used in which the small-scale effect is taken into account based on...The resonance frequencies and stability of a nanobeam in a longitudinal magnetic field are investigated.To this aim,a three dimensional beam model is used in which the small-scale effect is taken into account based on the nonlocal elasticity theory.The Lorentz forces are obtained in terms of the local elastic rotations of the beam and the thermal stress due to current is modeled as an axial compressive force.Using the Galerkin method,the governing equations of motion are solved and the stability boundary of the nanobeam is determined.展开更多
In this work, we study an analytical procedure for evaluation of the displacement and stresses in fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and due to the applica...In this work, we study an analytical procedure for evaluation of the displacement and stresses in fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and due to the application of the rotation and initial magnetic field. Effects of rotation and initial magnetic field are analyzed theoretically and computed numerically. Numerical results have been given and illustrated graphically. Comparison was made with the results obtained in the presence of rotation and initial magnetic field in fibre-reinforced anisotropic and isotropic elastic media. The results indicate the effect of rotation and initial magnetic field.展开更多
Highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes have been fabricated by means of magnetic-field and vibration technique. This method is an effective way of improving the degree of grain alignment and density...Highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes have been fabricated by means of magnetic-field and vibration technique. This method is an effective way of improving the degree of grain alignment and density of oxide core in tapes after heat treatment and pressing cycles.Jc of above 20% was increased than that without treatment.展开更多
In this study,non-linear thermal-mechanical stability and vibration analyses of different end-shaped single-walled carbon nanotube conveying viscous nano-magnetic fluid embedded in non-linear visco-elastic foundation ...In this study,non-linear thermal-mechanical stability and vibration analyses of different end-shaped single-walled carbon nanotube conveying viscous nano-magnetic fluid embedded in non-linear visco-elastic foundation under the influence of magnetic fields are presented.The development of the equation of motion was based on Euler-Bernoulli theory,Hamilton principle and nonlocal elasticity theory.The results of the analytical solutions using Galerkin decomposition differential transform method(GDDTM)were validated with existing experimental results.From the parametric studies,it was shown that decreasing the temperature difference as well as increasing the downstream angle decreased the system's stability for pre-bifurcation analysis but increased stability of the system for post bifurcation analysis.Also,the results obtained from the dynamic behaviour of the system indicated that the magnetic effect had an attenuating impact of about 45%on the system's response at any mode and for any boundary condition considered.It is hoped that this work will enhance the design and optimization of nano-devices with I,V,Y,L,K and T-shaped junctions under the influence of thermal-magneto-mechanical flow induced vibration.展开更多
The voltage was recorded to investigate the influence of the static magnetic field on droplet evolution during the mag-netically controlled electroslag remelting (MC-ESR) process. MC-ESR experiments were carried out...The voltage was recorded to investigate the influence of the static magnetic field on droplet evolution during the mag-netically controlled electroslag remelting (MC-ESR) process. MC-ESR experiments were carried out under differentremelting current, and transverse static magnetic fields (TSMF) of 85 mT, 130 mT and 160 mT were superimposed.Statistical work was performed to obtain the quantitative data of the droplets. The ASPEX Explorer was utilized toinvestigate the inclusions evolution of GCr15 ingots. The number of the droplets was 31 in 20 s during the traditional ESRprocess and reached 50 and 51 under the MC-ESR process with the TSMF of 85 mT and 130 mT, respectively. Whencompared the traditional ESR process with the MC-ESR process, the inclusions amount reduced 67%.展开更多
A travel ing magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si al oy. The samples obtained were characterized using an o...A travel ing magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si al oy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single ifeld can enhance the mechanical properties and reduce the segregation of Si element in Al-1wt.%Si alloy to some extent. The application of a compound field can obtain the best reifnement and homogeneity of the Si element in the al oy, leading to the highest increase of tensile strength and elongation among the three applied ifelds. The mechanism of the action of external ifelds on the reifnement of microstructures and homogeneity of the Si element is discussed and the compound ifeld is considered to be an effective method to achieve high quality Al alloys.展开更多
The Electroslag Remelting(ESR)Process has been developed quickly in recent years for its productions of excellent metal ingots with high purity,compact structure,homogeneous composition and clean surface.However,some ...The Electroslag Remelting(ESR)Process has been developed quickly in recent years for its productions of excellent metal ingots with high purity,compact structure,homogeneous composition and clean surface.However,some problems in traditional ESR process still exist,for example the nonmetallic inclusions,coarse dendrite crystal and solute segregation in large-scale ESR etc.In this study we combine the ESR process with electromagnetic processing of materials(EPM)process in GCr15 steel under conditions of 400-700 amps current.The microstructure and inclusions analysis showed that,the inner structure of ingots is compact and homogeneous and no remarkable inclusions appear when superimposing static magnetic field simultaneously.Refined branch grain size,homogeneous distribution of solute, decreased concentration of inclusions and impurities and elevated hardness also could be achieved.ESR process under steady magnetic field makes melt pool planer when compared with that without magnetic field,which would be explained by the electromagnetic vibration refined metal melting drops and the temperature field in the pool is uniformity.展开更多
This paper aims to study the effect of externally applied longitudinal magnetic field on the transverse vibration of viscoelastic double-walled carbon nanotubes (visco-DWCNTs) embedded in a viscoelastic medium. The ...This paper aims to study the effect of externally applied longitudinal magnetic field on the transverse vibration of viscoelastic double-walled carbon nanotubes (visco-DWCNTs) embedded in a viscoelastic medium. The analyses are carried out based on the nonlocal viscoelastic model and Euler-Bernoulli beam theory. Governing equations are derived for the vibration of the embedded visco-DWCNT subjected to a magnetic field, where the Lorentz magnetic force, the surrounding viscoelastic medium, the intertube van der Waals forces and viscoelasticity of the DWCNT are taken into consideration. In this study, the transfer function method is employed to solve the governing equations, which enables one to obtain the natural frequencies and the corresponding mode shapes in closed form for the DWCNTs with arbitrary boundary conditions. Here the developed mechanics model is first compared with the existing techniques available in the literature in a few particular cases, where excellent agreement is achieved. The validation of the model is followed by a detailed parametric study of the effects of longitudinal magnetic field, nonlocal parameter, boundary conditions, structural damping coefficient and aspect ratio of the DWCNTs on their vibration. The study demonstrates the efficiency of the present technique designed for vibration analysis of a complicated multi-physics system comprising DWCNTs, the viscoelastic medium and a magnetic field in longitudinal direction.展开更多
The effects of electromagnetic vibration (EMV) on the refinement and migration of primary silicons in the A1-18 wt pct Si alloy were investigated systematically. It was found that EMV could effectively refine primar...The effects of electromagnetic vibration (EMV) on the refinement and migration of primary silicons in the A1-18 wt pct Si alloy were investigated systematically. It was found that EMV could effectively refine primary silicons. The equivalent diameter of primary silicon first decreases slowly with the current increasing from 1 A to 3 A, but then drops rapidly between 3 A and 10 A, next gradually decreases with increasing current intensity. When the EMV intensity was low, the primary silicons were agglomerated and expelled to the top of a sample, the segregation of silicon grains gradually decreased and the agglomerating phenomena disappeared with the increase of EMV intensity, and the star-like coarse primary silicons turned refined flake or square morphology. The refinement and migration of primary silicons depended on the Lorentz force, gravity and the effective viscous force.展开更多
基金supported by the National Natural Science Foundation of China(No.59871026)
文摘An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of eutectic Al-Si alloy have been investigated experimentally. It is found that the eutectic structure has been refined by solely imposing high magnetic field while it is coarsened under the electromagnetic vibration. Furthermore, polyhedral Si grains and non-dendritic α-Al appeared when the electromagnetic vibration strength was strong enough. The refining of eutectic structure is attributed to the decrease of diffusion coefficient caused by the strong magnetic field. The coarseness of eutectic structure may be attributed to the convection caused by electromagnetic vibration. Strong convection may break co-operative growth of eutectic phases to form polyhedral Si grains and non-dendritic α-Al.
文摘The effect of magnetic field on the plane vibrations for an elastodynamic orthotropic sphere is studied. Equations of elastodynamic problems of the orthotropic hollow sphere in terms of displacement are solved. The numerical results of the frequency equations in the presence of magnetic field are discussed and shown graphically. Compar-isons are made with the result in the presence and absence of magnetic field in the case of orthotropic sphere. The results show that the effect of magnetic field is very pronounced.
文摘The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the rotor since the air-gap distribution between the rotor and the stator is not uniform. This electromagnetic load is a nonlinear function of the distance between the geometric centers of the rotor and the stator. The nonlinear equation of motion is obtained by the inclusion of the nonlinearity in the inertia, the curvature, and the electromagnetic load. After discretization of the governing partial differential equations by the Galerkin method, the multiple-scale perturbation method is used to derive the approximate solutions to the equations. In the numerical results, the effects of the electromagnetic parameter load, the damping coefficient, the amplitude of the initial displacement, the mass moment of inertia, and the rotation speed on the linear and nonlinear backward and forward frequencies are investigated. The results show that the magnetic field has significant effects on the nonlinear frequency of oscillation.
文摘The resonance frequencies and stability of a nanobeam in a longitudinal magnetic field are investigated.To this aim,a three dimensional beam model is used in which the small-scale effect is taken into account based on the nonlocal elasticity theory.The Lorentz forces are obtained in terms of the local elastic rotations of the beam and the thermal stress due to current is modeled as an axial compressive force.Using the Galerkin method,the governing equations of motion are solved and the stability boundary of the nanobeam is determined.
文摘In this work, we study an analytical procedure for evaluation of the displacement and stresses in fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and due to the application of the rotation and initial magnetic field. Effects of rotation and initial magnetic field are analyzed theoretically and computed numerically. Numerical results have been given and illustrated graphically. Comparison was made with the results obtained in the presence of rotation and initial magnetic field in fibre-reinforced anisotropic and isotropic elastic media. The results indicate the effect of rotation and initial magnetic field.
文摘Highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes have been fabricated by means of magnetic-field and vibration technique. This method is an effective way of improving the degree of grain alignment and density of oxide core in tapes after heat treatment and pressing cycles.Jc of above 20% was increased than that without treatment.
文摘In this study,non-linear thermal-mechanical stability and vibration analyses of different end-shaped single-walled carbon nanotube conveying viscous nano-magnetic fluid embedded in non-linear visco-elastic foundation under the influence of magnetic fields are presented.The development of the equation of motion was based on Euler-Bernoulli theory,Hamilton principle and nonlocal elasticity theory.The results of the analytical solutions using Galerkin decomposition differential transform method(GDDTM)were validated with existing experimental results.From the parametric studies,it was shown that decreasing the temperature difference as well as increasing the downstream angle decreased the system's stability for pre-bifurcation analysis but increased stability of the system for post bifurcation analysis.Also,the results obtained from the dynamic behaviour of the system indicated that the magnetic effect had an attenuating impact of about 45%on the system's response at any mode and for any boundary condition considered.It is hoped that this work will enhance the design and optimization of nano-devices with I,V,Y,L,K and T-shaped junctions under the influence of thermal-magneto-mechanical flow induced vibration.
基金financial support of the National Key Research and Development Program of China(No.2016YFB0300401)the National Natural Science Foundation of China(Nos.U1732276 and 51704193)+2 种基金the General Financial Grant from the China Postdoctoral Science Foundation(No.2017M621431)the Science and Technology Commission of Shanghai Municipality(No.15520711000)Independent Research and Development Project of State Key of Advanced Special Steel,Shanghai University(SKLASS2015-Z021,SELF-2014-02)
文摘The voltage was recorded to investigate the influence of the static magnetic field on droplet evolution during the mag-netically controlled electroslag remelting (MC-ESR) process. MC-ESR experiments were carried out under differentremelting current, and transverse static magnetic fields (TSMF) of 85 mT, 130 mT and 160 mT were superimposed.Statistical work was performed to obtain the quantitative data of the droplets. The ASPEX Explorer was utilized toinvestigate the inclusions evolution of GCr15 ingots. The number of the droplets was 31 in 20 s during the traditional ESRprocess and reached 50 and 51 under the MC-ESR process with the TSMF of 85 mT and 130 mT, respectively. Whencompared the traditional ESR process with the MC-ESR process, the inclusions amount reduced 67%.
基金financially supported by the Key Project of Science and Technology Department of Henan Province(142102210449)the Key Project of Science and Technology of Henan Educational Committee,China(No.13A150518)the Postdoctoral Science Foundation of Henan Province
文摘A travel ing magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si al oy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single ifeld can enhance the mechanical properties and reduce the segregation of Si element in Al-1wt.%Si alloy to some extent. The application of a compound field can obtain the best reifnement and homogeneity of the Si element in the al oy, leading to the highest increase of tensile strength and elongation among the three applied ifelds. The mechanism of the action of external ifelds on the reifnement of microstructures and homogeneity of the Si element is discussed and the compound ifeld is considered to be an effective method to achieve high quality Al alloys.
基金Item Sponsored by Ministry of Major Science and Technology of Shanghai[No.09dz120640108DZ1130100]National High Technology Research and Development Program 863[2009AA03Z109]
文摘The Electroslag Remelting(ESR)Process has been developed quickly in recent years for its productions of excellent metal ingots with high purity,compact structure,homogeneous composition and clean surface.However,some problems in traditional ESR process still exist,for example the nonmetallic inclusions,coarse dendrite crystal and solute segregation in large-scale ESR etc.In this study we combine the ESR process with electromagnetic processing of materials(EPM)process in GCr15 steel under conditions of 400-700 amps current.The microstructure and inclusions analysis showed that,the inner structure of ingots is compact and homogeneous and no remarkable inclusions appear when superimposing static magnetic field simultaneously.Refined branch grain size,homogeneous distribution of solute, decreased concentration of inclusions and impurities and elevated hardness also could be achieved.ESR process under steady magnetic field makes melt pool planer when compared with that without magnetic field,which would be explained by the electromagnetic vibration refined metal melting drops and the temperature field in the pool is uniformity.
基金supported by the National Natural Science Foundation of China (Grant Nos.11272348 and 11302254)
文摘This paper aims to study the effect of externally applied longitudinal magnetic field on the transverse vibration of viscoelastic double-walled carbon nanotubes (visco-DWCNTs) embedded in a viscoelastic medium. The analyses are carried out based on the nonlocal viscoelastic model and Euler-Bernoulli beam theory. Governing equations are derived for the vibration of the embedded visco-DWCNT subjected to a magnetic field, where the Lorentz magnetic force, the surrounding viscoelastic medium, the intertube van der Waals forces and viscoelasticity of the DWCNT are taken into consideration. In this study, the transfer function method is employed to solve the governing equations, which enables one to obtain the natural frequencies and the corresponding mode shapes in closed form for the DWCNTs with arbitrary boundary conditions. Here the developed mechanics model is first compared with the existing techniques available in the literature in a few particular cases, where excellent agreement is achieved. The validation of the model is followed by a detailed parametric study of the effects of longitudinal magnetic field, nonlocal parameter, boundary conditions, structural damping coefficient and aspect ratio of the DWCNTs on their vibration. The study demonstrates the efficiency of the present technique designed for vibration analysis of a complicated multi-physics system comprising DWCNTs, the viscoelastic medium and a magnetic field in longitudinal direction.
基金supported by the Major Special Program of Shanghai,China (No.08DZ1130100)Shanghai Postdoctoral Sustentation Fund,China (No.10R21413100)
文摘The effects of electromagnetic vibration (EMV) on the refinement and migration of primary silicons in the A1-18 wt pct Si alloy were investigated systematically. It was found that EMV could effectively refine primary silicons. The equivalent diameter of primary silicon first decreases slowly with the current increasing from 1 A to 3 A, but then drops rapidly between 3 A and 10 A, next gradually decreases with increasing current intensity. When the EMV intensity was low, the primary silicons were agglomerated and expelled to the top of a sample, the segregation of silicon grains gradually decreased and the agglomerating phenomena disappeared with the increase of EMV intensity, and the star-like coarse primary silicons turned refined flake or square morphology. The refinement and migration of primary silicons depended on the Lorentz force, gravity and the effective viscous force.