Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domai...Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domain wall, depending on the propagation direction, were observed under an external magnetic field. When the domain walls propagate in the opposite direction along the long axis of the nanostrip, the Walker breakdown fields as well as the average velocities are different. The asymmetric landscape of demagnetization energies, which arises from the trapezoidal geometry, is the main origin of the asymmetric propagation behavior. Furthermore, a trapezoid-cross-section nanostrip will become a nanotube if it is rolled artificially along its long axis, and thus a two-dimensional transverse domain wall will become a three-dimensional one. Interestingly, it is found that the asymmetric behaviors observed in two-dimensional nanostrips with trapezoidal cross section are similar with some dynamic properties occurring in three-dimensional nanotubes.展开更多
We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic fi...We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques axe kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.展开更多
It is still an open debate whether the 1:5 H cell boundaries(CBs)or the intersections of 1:3 R platelets and1:5 H CBs are the strong pining sites for the cellular nanostructured 2:17-type Sm-Co-Fe-Cu-Zr high temperatu...It is still an open debate whether the 1:5 H cell boundaries(CBs)or the intersections of 1:3 R platelets and1:5 H CBs are the strong pining sites for the cellular nanostructured 2:17-type Sm-Co-Fe-Cu-Zr high temperature permanent magnets despite that they have been widely applied in advanced industries since 1970 s.Herein,through tuning the volume fraction of Zr-enriched 1:3 R platelets by varying the second-step aging time,the pinning behavior in a model magnet Sm_(2.5)Co_(44.9)Fe_(21.5)Cu_(5.6)Zr_(3.0)(wt%)was investigated.The results show that the volume fraction of 1:3 R platelets can be effectively enlarged without changing the cell size(i.e.the volume fraction of CBs)by extending the aging time at 400℃.Micro scopic TEM characterizations co mbined with macro scopic magnetic measurements reveals that the locally thickened 1:3 R platelets after long-term second-step aging reduce the effective pinning area by interrupting the magnetic domain walls at CBs,weakening the average pinning strength and the coercivity of the magnet.Consequently,our work supports that the 1:5 H CBs act as the dominating pinning sites instead of the intersections of 1:3 R platelets and 1:5 H CBs,which may provide an important insight towards understanding the hard magnetism of pinning-controlled permanent magnets.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFB0903700 and 2017YFB0903702)Yichang Government Fund(Grant No.A19-402-a05)+1 种基金the Korea Research Foundation(NRF)(Grant No.2018R1A2B3009569)Korea Basic Science Institute(KBSI)(Grant No.D39614).
文摘Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domain wall, depending on the propagation direction, were observed under an external magnetic field. When the domain walls propagate in the opposite direction along the long axis of the nanostrip, the Walker breakdown fields as well as the average velocities are different. The asymmetric landscape of demagnetization energies, which arises from the trapezoidal geometry, is the main origin of the asymmetric propagation behavior. Furthermore, a trapezoid-cross-section nanostrip will become a nanotube if it is rolled artificially along its long axis, and thus a two-dimensional transverse domain wall will become a three-dimensional one. Interestingly, it is found that the asymmetric behaviors observed in two-dimensional nanostrips with trapezoidal cross section are similar with some dynamic properties occurring in three-dimensional nanotubes.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474183,51371105 and 51177088the Korea Research Foundation(NRF) under Grant No 2010-0021735+1 种基金the Leading Foreign Research Institute Recruitment Program of Korea under Grant No 2010-00471the Science and Technology Department of Hubei Province under Grant No 2014BEC060
文摘We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques axe kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.
基金Project supported by the National Natural Science Foundation of China(52071256,51901170)the Opening Project of Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education,China(MMMM-202003)。
文摘It is still an open debate whether the 1:5 H cell boundaries(CBs)or the intersections of 1:3 R platelets and1:5 H CBs are the strong pining sites for the cellular nanostructured 2:17-type Sm-Co-Fe-Cu-Zr high temperature permanent magnets despite that they have been widely applied in advanced industries since 1970 s.Herein,through tuning the volume fraction of Zr-enriched 1:3 R platelets by varying the second-step aging time,the pinning behavior in a model magnet Sm_(2.5)Co_(44.9)Fe_(21.5)Cu_(5.6)Zr_(3.0)(wt%)was investigated.The results show that the volume fraction of 1:3 R platelets can be effectively enlarged without changing the cell size(i.e.the volume fraction of CBs)by extending the aging time at 400℃.Micro scopic TEM characterizations co mbined with macro scopic magnetic measurements reveals that the locally thickened 1:3 R platelets after long-term second-step aging reduce the effective pinning area by interrupting the magnetic domain walls at CBs,weakening the average pinning strength and the coercivity of the magnet.Consequently,our work supports that the 1:5 H CBs act as the dominating pinning sites instead of the intersections of 1:3 R platelets and 1:5 H CBs,which may provide an important insight towards understanding the hard magnetism of pinning-controlled permanent magnets.