Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic pr...Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.展开更多
High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introdu...High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introduce the principle of operation and recent developments of RF-OPMs and focus on reviewing the MFI applications in magnetic induction tomography, ultralow-field magnetic resonance imaging, and magnetic particle imaging. For the applications of RF-OPMs, ranging from industrial monitoring to medical imaging and security screening, the unshielded and portable RF-OPMs(and RF-OPM array)techniques are still under the further development for detecting and scanning over the target object for accomplishing the final three-dimensional imaging, and thus extremely require the abilities of active compensation of the ambient magnetic field and sensor miniaturization in the future.展开更多
An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the...An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB2012600)the Shanghai Aerospace Science and Technology Innovation Fund,China (Grant No.SAST-2022-102)。
文摘Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.
基金supported by the National Natural Science Foundation of China (Nos.62375002,62071012,61571018,61531003,and 91436210)the National Science Fund for Distinguished Young Scholars of China (No.61225003)the National Hi-Tech Research and Development (863) Program。
文摘High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introduce the principle of operation and recent developments of RF-OPMs and focus on reviewing the MFI applications in magnetic induction tomography, ultralow-field magnetic resonance imaging, and magnetic particle imaging. For the applications of RF-OPMs, ranging from industrial monitoring to medical imaging and security screening, the unshielded and portable RF-OPMs(and RF-OPM array)techniques are still under the further development for detecting and scanning over the target object for accomplishing the final three-dimensional imaging, and thus extremely require the abilities of active compensation of the ambient magnetic field and sensor miniaturization in the future.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of State Administration of Market Regulation,China(Grant No.2021MK039)。
文摘An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).