The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The...The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.展开更多
The pulsed power is a potential means for energy saving and presents an alternative to the conventional mechanical communication for minerals.The effect of magnetic pulse treatment on grindability of a magnetite ore w...The pulsed power is a potential means for energy saving and presents an alternative to the conventional mechanical communication for minerals.The effect of magnetic pulse treatment on grindability of a magnetite ore was investigated by grindability tests.The results of the investigation show that the pulsed treatment has little effect on the particle size distribution of the magnetite ore.Significant micro-cracks or fractures are not found by SEM analysis in magnetic pulse treated sample.Magnetic separation of magnetic pulse treated and untreated magnetite ore indicates that iron recovery increases from 81.3% in the untreated sample to 87.7% in the magnetic pulse treated sample,and the corresponding iron grade increases from 42.1% to 44.4%.The results demonstrate that the magnetic pulse treatment does not significantly weaken the mineral grain boundaries or facilitate the liberation of minerals,but is beneficial to magnetic separation.展开更多
Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission...Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.展开更多
Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness ...Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles.展开更多
MPW (magnetic pulse welding) is a solid state joining technology that allows for the generation of strong metallic bonds, even between dissimilar metals. Due to the absence of external heat, critical intermetallic p...MPW (magnetic pulse welding) is a solid state joining technology that allows for the generation of strong metallic bonds, even between dissimilar metals. Due to the absence of external heat, critical intermetallic phases can largely be avoided. In this process, Lorentz forces are utilized for the rapid acceleration of at least one of the two metallic joining partners leading to the controlled high velocity impact between them. The measurement of the collision conditions and their targeted manipulation are the key factors of a successful process development. Optical measuring techniques are preferred, since they are not influenced by the prevalent strong magnetic field in the vicinity of the working coil. In this paper, the characteristic high velocity impact flash during MPW was monitored and evaluated using phototransistors in order to measure the time of the impact. The results are in good accordance with the established PDV (photon Doppler velocimetry) and show a good repeatability. Furthermore, the collision front velocity was investigated using adapted part geometries within a series of tests. This velocity component is one of the key parameters in MPW; its value decreases along the weld zone. With the help of this newly introduced measurement tool, the magnetic pressure distribution or the joining geometry can be adjusted more effectively.展开更多
The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive weld...The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.展开更多
A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studi...A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studied.The distribution of electromagnetic force and flow field in the melt under the WSPMF was simulated to reveal the grain refining mechanism.Results show that the grain refinement is attributed to the combined effect of the melt flow and oscillation under a WSPMF.When the pulse interval is 5 ms,the extreme value of electromagnetic force is the highest,and the size of the crystal nucleus is 0.35 mm.In the case of similar flow rates,the grain size gradually decreases as the pulse interval increases.The range of the harmonic frequency of the magnetic field gradually expands with the increase of the pulse interval,which can provide more energy for nucleation at the solid-liquid interface and promote nucleation.展开更多
Objective To study the effects of electronic magnetic pulse (EMP) on peripheral lymphocytes in dogs and to explore the mechanisms of the biological effects of EMP.Methods T, TH and Ts lymphocytes were estimated by a...Objective To study the effects of electronic magnetic pulse (EMP) on peripheral lymphocytes in dogs and to explore the mechanisms of the biological effects of EMP.Methods T, TH and Ts lymphocytes were estimated by acid phosphatase cytochemistry. Apoptotic lymphocytes and Bax and Bcl-2 proteins related to apoptosis were observed with in situ terminal labeling and immunocytochemistry.Results Peripheral T lymphocyte subpopulations decreased obviously after EMP irradiation with (2 - 12) × 104 V/m. Apoptotic percentages of lymphocytes increased with the elevation of EMP doses. Ten days after different intensity radiation, the Bax protein was found to be elevated in accord with the peak value of lymphocyte apoptosis. However, Bcl-2 protein decreased obviously.Conclusion A definite field intensity EMP could induce injury to lymphocytes. Apoptosis induced by EMP is one of the main causes of peripheral lymphocyte death and leads to immunosuppression of the body.These results suggest that people should pay more attention to the injury caused by EMP, especially to the immunological functions of the body.展开更多
The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC ...The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC casting AZ80 magnesium alloy was refined obviously by the low-voltage pulsed magnetic field and significant grain refinement in the DC casting ingot of AZ80 magnesium alloy was achieved.Meanwhile,the morphology of the dentritic in the DC casting ingot was transformed from coarse dentritic to fine rosette with the application of low-voltage pulsed magnetic field.The ability of deformation of the ingot was enhanced and especially the plasticity of the ingot center after upsetting was improved greatly by more than 80%after deformation.展开更多
The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pul...The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.展开更多
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on th...The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts.展开更多
In industrial production,the standoff distance of magnetic pulse welding(MPW)is a critical parameter as it directly affects welding quality.However,the effects of standoff distance on the physical properties of MPW jo...In industrial production,the standoff distance of magnetic pulse welding(MPW)is a critical parameter as it directly affects welding quality.However,the effects of standoff distance on the physical properties of MPW joints have not been investi-gated.Therefore,in this study,aluminum alloy(AA5182)sheets and high-strength low-alloy steel(HC340LA)sheets were welded through MPW at a discharge energy of 20 kJ,under various standoff distances.Thereafter,mechanical tests were performed on the MPW joints,and the results indicate that there is a significant change in the shear strength of the AA5182/HC340LA-welded joints with respect to the standoff distance.When the standoff distance ranges from 0.8 to 1.4 mm,the strength of the joint is higher than that of the base AA5182 sheet.Microscopic observations were conducted to analyze the interfacial morphology,element diffusion behavior,and microdefects on the welding interface of the AA5182/HC340LA joints.The AA5182/HC340LA joint with a standoff distance of 1.4 mm possesses the longest welded region and the largest interfacial wave.This interfacial wave pattern is suitable for achieving MPW joints with high shear strengths.展开更多
Magnetic Pulse Welding(MPW)is a very high speed process which produces solid-state welds.In this work, Welding interface microstructure of Al/Fe tubes by MPW and its influence factors were investigated.The equipment w...Magnetic Pulse Welding(MPW)is a very high speed process which produces solid-state welds.In this work, Welding interface microstructure of Al/Fe tubes by MPW and its influence factors were investigated.The equipment with a capacitor of 100 μF was used under different voltages range from 8 kV to 15 kV.SEM and TEM observation were carried out to investigate microstructure of the welding interface.The results show that the dissimilar tubes(Al/Fe)could be welded with the optimum tapered angle of about 4 degree.The welding interface in Al/Fe joints exhibits a characteristic wavy morphology with wavelength of about I00 μm.A new layer exists between base tubes consisting of AI and Fe elements.Ultrafme grained microstructure is founded near the welding interface.The results obtain in this work provide the fundamentals for the investigation of MPW mechanism of dissimilar tubes.展开更多
Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generat...Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automo- tive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation.展开更多
The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidifi...The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidification structures of 2124 Al-alloy under pulsed magnetic field. The eutectic phase at grain boundaries change from thick continuous eutectic network to thin discontinuous one, and the distribution of solute elements was also homogenized. The typical negative segregation phenomenon of Cu in common solidification condition was restrained, and the segregation of Mg decreased.展开更多
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pu...The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy.The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm.By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification.The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field.The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited.In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.展开更多
To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidifica...To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity.展开更多
The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer s...The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer solution Na 2HPO 4/NaH 2PO 4(0 334/0 867 mmol/L). Experimental results indicated that the survivability(N/N 0; where N 0 and N are the number of cells survived per mill il iter before and after electromagnetic pulses application, respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that the medium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinate influences in destruction of E. coli cells by the application of magnetic pulses. The application of an magnetic intensity B=160 mT at pulses frequency f=62 kHz and treatment time t=16 h result in a considerable destruction levels of E. coli cells (N/N 0=10 -4 ). Possible mechanisms involved in sterilization of the magnetic field treatment were discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. The practicability test showed that the treatment time was shortened to 4 h with the application of three groups of parallel coil when the survivability of E.coli cells was less than 0 01%; and the power consumption was about 0 2 kWh /m 3.展开更多
The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification struct...The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure, mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage. Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover, in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.展开更多
文摘The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.
基金Projects(N140108001,N150106003)supported by the Fundamental Research Funds for National University of China
文摘The pulsed power is a potential means for energy saving and presents an alternative to the conventional mechanical communication for minerals.The effect of magnetic pulse treatment on grindability of a magnetite ore was investigated by grindability tests.The results of the investigation show that the pulsed treatment has little effect on the particle size distribution of the magnetite ore.Significant micro-cracks or fractures are not found by SEM analysis in magnetic pulse treated sample.Magnetic separation of magnetic pulse treated and untreated magnetite ore indicates that iron recovery increases from 81.3% in the untreated sample to 87.7% in the magnetic pulse treated sample,and the corresponding iron grade increases from 42.1% to 44.4%.The results demonstrate that the magnetic pulse treatment does not significantly weaken the mineral grain boundaries or facilitate the liberation of minerals,but is beneficial to magnetic separation.
基金supported by the High Technology Resesarch Development Project of China (863)
文摘Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.
文摘Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles.
文摘MPW (magnetic pulse welding) is a solid state joining technology that allows for the generation of strong metallic bonds, even between dissimilar metals. Due to the absence of external heat, critical intermetallic phases can largely be avoided. In this process, Lorentz forces are utilized for the rapid acceleration of at least one of the two metallic joining partners leading to the controlled high velocity impact between them. The measurement of the collision conditions and their targeted manipulation are the key factors of a successful process development. Optical measuring techniques are preferred, since they are not influenced by the prevalent strong magnetic field in the vicinity of the working coil. In this paper, the characteristic high velocity impact flash during MPW was monitored and evaluated using phototransistors in order to measure the time of the impact. The results are in good accordance with the established PDV (photon Doppler velocimetry) and show a good repeatability. Furthermore, the collision front velocity was investigated using adapted part geometries within a series of tests. This velocity component is one of the key parameters in MPW; its value decreases along the weld zone. With the help of this newly introduced measurement tool, the magnetic pressure distribution or the joining geometry can be adjusted more effectively.
文摘The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071194,U1760204)the National Key Research Program of China(Grant Nos.2020YFB2008401 and 2017YFB0701800)。
文摘A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studied.The distribution of electromagnetic force and flow field in the melt under the WSPMF was simulated to reveal the grain refining mechanism.Results show that the grain refinement is attributed to the combined effect of the melt flow and oscillation under a WSPMF.When the pulse interval is 5 ms,the extreme value of electromagnetic force is the highest,and the size of the crystal nucleus is 0.35 mm.In the case of similar flow rates,the grain size gradually decreases as the pulse interval increases.The range of the harmonic frequency of the magnetic field gradually expands with the increase of the pulse interval,which can provide more energy for nucleation at the solid-liquid interface and promote nucleation.
文摘Objective To study the effects of electronic magnetic pulse (EMP) on peripheral lymphocytes in dogs and to explore the mechanisms of the biological effects of EMP.Methods T, TH and Ts lymphocytes were estimated by acid phosphatase cytochemistry. Apoptotic lymphocytes and Bax and Bcl-2 proteins related to apoptosis were observed with in situ terminal labeling and immunocytochemistry.Results Peripheral T lymphocyte subpopulations decreased obviously after EMP irradiation with (2 - 12) × 104 V/m. Apoptotic percentages of lymphocytes increased with the elevation of EMP doses. Ten days after different intensity radiation, the Bax protein was found to be elevated in accord with the peak value of lymphocyte apoptosis. However, Bcl-2 protein decreased obviously.Conclusion A definite field intensity EMP could induce injury to lymphocytes. Apoptosis induced by EMP is one of the main causes of peripheral lymphocyte death and leads to immunosuppression of the body.These results suggest that people should pay more attention to the injury caused by EMP, especially to the immunological functions of the body.
基金Project(51034012)supported by the the National Natural Science Foundation of ChinaProject(2013CB632205)supported by the National Basic Research Program of China
文摘The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC casting AZ80 magnesium alloy was refined obviously by the low-voltage pulsed magnetic field and significant grain refinement in the DC casting ingot of AZ80 magnesium alloy was achieved.Meanwhile,the morphology of the dentritic in the DC casting ingot was transformed from coarse dentritic to fine rosette with the application of low-voltage pulsed magnetic field.The ability of deformation of the ingot was enhanced and especially the plasticity of the ingot center after upsetting was improved greatly by more than 80%after deformation.
基金Project(2010CB631205)supported by the National Basic Research Program of ChinaProject(51034012)supported by the National Natural Science Foundation of China
文摘The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
文摘The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts.
基金This project is supported by National Natural Science Foundation of China(No.51975202)the Natural Science Foundation of Hunan Province(2019JJ30005).
文摘In industrial production,the standoff distance of magnetic pulse welding(MPW)is a critical parameter as it directly affects welding quality.However,the effects of standoff distance on the physical properties of MPW joints have not been investi-gated.Therefore,in this study,aluminum alloy(AA5182)sheets and high-strength low-alloy steel(HC340LA)sheets were welded through MPW at a discharge energy of 20 kJ,under various standoff distances.Thereafter,mechanical tests were performed on the MPW joints,and the results indicate that there is a significant change in the shear strength of the AA5182/HC340LA-welded joints with respect to the standoff distance.When the standoff distance ranges from 0.8 to 1.4 mm,the strength of the joint is higher than that of the base AA5182 sheet.Microscopic observations were conducted to analyze the interfacial morphology,element diffusion behavior,and microdefects on the welding interface of the AA5182/HC340LA joints.The AA5182/HC340LA joint with a standoff distance of 1.4 mm possesses the longest welded region and the largest interfacial wave.This interfacial wave pattern is suitable for achieving MPW joints with high shear strengths.
基金Item Sponsored by National Basic Research Program of China (973 Program) [2011CB012805]Funds of State Key Laboratory of Advanced Welding and Joining[AWPT-M05]
文摘Magnetic Pulse Welding(MPW)is a very high speed process which produces solid-state welds.In this work, Welding interface microstructure of Al/Fe tubes by MPW and its influence factors were investigated.The equipment with a capacitor of 100 μF was used under different voltages range from 8 kV to 15 kV.SEM and TEM observation were carried out to investigate microstructure of the welding interface.The results show that the dissimilar tubes(Al/Fe)could be welded with the optimum tapered angle of about 4 degree.The welding interface in Al/Fe joints exhibits a characteristic wavy morphology with wavelength of about I00 μm.A new layer exists between base tubes consisting of AI and Fe elements.Ultrafme grained microstructure is founded near the welding interface.The results obtain in this work provide the fundamentals for the investigation of MPW mechanism of dissimilar tubes.
文摘Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automo- tive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation.
基金This research was supported by National Key Basic Research and Development Programme of China "973" (No. G19990649051).
文摘The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidification structures of 2124 Al-alloy under pulsed magnetic field. The eutectic phase at grain boundaries change from thick continuous eutectic network to thin discontinuous one, and the distribution of solute elements was also homogenized. The typical negative segregation phenomenon of Cu in common solidification condition was restrained, and the segregation of Mg decreased.
基金Project(ZC304009103) supported by the Doctoral Fund of Zhejiang Normal University,ChinaProject(KYJ06Y09157) supported by School-level Project of Zhejiang Normal University,China
文摘The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy.The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm.By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification.The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field.The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited.In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.
基金Item Sponsored by National Natural Science Foundation of China (50274050) and Shanghai Baoshan Iron and Steel Group
文摘To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity.
文摘The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer solution Na 2HPO 4/NaH 2PO 4(0 334/0 867 mmol/L). Experimental results indicated that the survivability(N/N 0; where N 0 and N are the number of cells survived per mill il iter before and after electromagnetic pulses application, respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that the medium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinate influences in destruction of E. coli cells by the application of magnetic pulses. The application of an magnetic intensity B=160 mT at pulses frequency f=62 kHz and treatment time t=16 h result in a considerable destruction levels of E. coli cells (N/N 0=10 -4 ). Possible mechanisms involved in sterilization of the magnetic field treatment were discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. The practicability test showed that the treatment time was shortened to 4 h with the application of three groups of parallel coil when the survivability of E.coli cells was less than 0 01%; and the power consumption was about 0 2 kWh /m 3.
基金The projects was supported by the Pre-research Foundation of the National Basic Research Program (973 Program, grant No. 2004CCA07000)the Science and Technology Committee of Shanghai Municipality (Grant No. 04XD14008).
文摘The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure, mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage. Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover, in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.