We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolut...We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.展开更多
Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar...Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.展开更多
A three-dimensional(3-D)global hybrid simulation is carried out for the generation and structure of magnetic reconnection in the magnetosheath due to interaction of an interplanetary Tangential Discontinuity(TD)with t...A three-dimensional(3-D)global hybrid simulation is carried out for the generation and structure of magnetic reconnection in the magnetosheath due to interaction of an interplanetary Tangential Discontinuity(TD)with the bow shock and magnetosphere.Runs are performed for solar wind TDs possessing diFFerent initial half-widths.As the TD propagates through the bow shock toward the magnetopause,it is greatly narrowed by a two-step compression processes,a "shock compression" followed by a subsequent "convective compression".In cases with a relatively thin solar wind TD,3-D patchy reconnection is initiated in the transmitted TD,forming magnetosheath flux ropes.Multiple components of ion particles are present in the velocity distribution in the magnetosheath merging,accompanied by ion heating.For cases with a relatively wide initial TD,a dominant single X-line appears in the subsolar magnetosheath after the transmitted TD is narrowed.A shock analysis is performed for the detailed structure of magnetic reconnection in the magnetosheath.Rotational Discontinuity(RD)/TimeDependent Intermediate Shock(TDIS)are found to dominate the reconnection layer,which and some weak slow shocks are responsible for the ion heating and acceleration.展开更多
Relativistic magnetic reconnection(MR)driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional(3D)kinetic relativistic particle-in-cell(PIC)code.We find that chan...Relativistic magnetic reconnection(MR)driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional(3D)kinetic relativistic particle-in-cell(PIC)code.We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment.As the separation distance becomes larger,the magnetization parameterσbecomes smaller.The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance.Moreover,the collisionless shocks’contribution to energetic electrons is close to the magnetic reconnection contribution withσdecreasing,which results in a steeper electron energy spectrum.Basing on the3D outflow momentum configuration,the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameterσis very high in the 3D outflow area.展开更多
A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at lar...A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10^(10)–10^(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10^(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).展开更多
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio...Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.展开更多
The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol...The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.展开更多
The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel curren...The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel currents within the initial magnetic islands,the magnetic islands begin to approach each other and merge into one big island.We find that this newly formed island is unstable and can be divided into two small magnetic islands spontaneously.Lastly,these two small islands merge again.We follow the time evolution of this process,in which the contributions of three mechanisms of electron acceleration at different stages,including the Fermi,parallel electric field,and betatron mechanisms,are studied with the guide center theory.展开更多
Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in colli- sionless magnetic reconnection, and the proton/electron mass ratio is taken to be mi /me = 256. The results show tha...Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in colli- sionless magnetic reconnection, and the proton/electron mass ratio is taken to be mi /me = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow re- gion along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities.展开更多
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionle...Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport...The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.展开更多
The effects of electron pressure gradient term in the generalized Ohm’ law is studied by 3 D MHD simulation code under condition of high plasma Beta and small ion inertial length. The results show that the electron p...The effects of electron pressure gradient term in the generalized Ohm’ law is studied by 3 D MHD simulation code under condition of high plasma Beta and small ion inertial length. The results show that the electron pressure gradient term increases the velocity of electrons and ions, and therefore increases the field aligned current, finally leading to the increase of core magnetic field. Since the field aligned current is the principal way by which the magnetosphere is coupled with the ionosphere, the electron pressure gradient term enhances the coupling of magnetosphere ionosphere. The electron pressure gradient can also generate the dynamic Alfven wave. It is supposed that this Alfven wave may change the velocity of particles.展开更多
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory....We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.展开更多
基金the support from the Key Research Program of the Chinese Academy of Sciences(No.ZDBSSSW-TLC00105)the National Key R&D Program of China(No.2022YFF0503200)+1 种基金National Natural Science Foundation of China(Nos.41974173 and 42274224)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2019066)。
文摘We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.
基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000).
文摘Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.
基金Supported by NSF grant ATM-0646442 to Auburn University and the National Natural Science Foundation of China(NSFC) grant 40640420563 to Wuhan University
文摘A three-dimensional(3-D)global hybrid simulation is carried out for the generation and structure of magnetic reconnection in the magnetosheath due to interaction of an interplanetary Tangential Discontinuity(TD)with the bow shock and magnetosphere.Runs are performed for solar wind TDs possessing diFFerent initial half-widths.As the TD propagates through the bow shock toward the magnetopause,it is greatly narrowed by a two-step compression processes,a "shock compression" followed by a subsequent "convective compression".In cases with a relatively thin solar wind TD,3-D patchy reconnection is initiated in the transmitted TD,forming magnetosheath flux ropes.Multiple components of ion particles are present in the velocity distribution in the magnetosheath merging,accompanied by ion heating.For cases with a relatively wide initial TD,a dominant single X-line appears in the subsolar magnetosheath after the transmitted TD is narrowed.A shock analysis is performed for the detailed structure of magnetic reconnection in the magnetosheath.Rotational Discontinuity(RD)/TimeDependent Intermediate Shock(TDIS)are found to dominate the reconnection layer,which and some weak slow shocks are responsible for the ion heating and acceleration.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1930108,12175018,12135001,12075030,and 11903006)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25030700)。
文摘Relativistic magnetic reconnection(MR)driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional(3D)kinetic relativistic particle-in-cell(PIC)code.We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment.As the separation distance becomes larger,the magnetization parameterσbecomes smaller.The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance.Moreover,the collisionless shocks’contribution to energetic electrons is close to the magnetic reconnection contribution withσdecreasing,which results in a steeper electron energy spectrum.Basing on the3D outflow momentum configuration,the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameterσis very high in the 3D outflow area.
基金supported by the strategic priority research program of CAS (XDA17040507, XDA15010900)the national basic research program of China (2013CBA01503)+5 种基金the key program of NSFC (11333007)joint funds of NSFC(U1631130)frontier science key programs of CAS (QYZDJ-SSWSLH012)the program for innovation team of Yunnan Provincethe program for Guangdong introducing Innovative and entrepreneurial teams (2016ZT06D211)the special program for applied research on super computation of the NSFC-Guangdong joint fund (second phase) under No.U1501501
文摘A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10^(10)–10^(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10^(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).
基金Project supported by the National Natural Science of China(Grant Nos.41527804 and 41774169)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJSSW-DQC010).
文摘Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.
基金supported by National Natural Science Foundation of China(No.11975038)the National Key Research and Development Program of China(No.2022YFA1604600)。
文摘The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
基金supported by the National Natural Science Foundation of China(Grant Nos.41804159 and 41774169)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel currents within the initial magnetic islands,the magnetic islands begin to approach each other and merge into one big island.We find that this newly formed island is unstable and can be divided into two small magnetic islands spontaneously.Lastly,these two small islands merge again.We follow the time evolution of this process,in which the contributions of three mechanisms of electron acceleration at different stages,including the Fermi,parallel electric field,and betatron mechanisms,are studied with the guide center theory.
基金Supported by National Natural Science Foundation of China (Grant No. 40725013)Open Research Program Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences
文摘Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in colli- sionless magnetic reconnection, and the proton/electron mass ratio is taken to be mi /me = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow re- gion along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities.
基金supported by the National Natural Science Foundation of China (40725013, 40974081 and 40931053)the Chinese Academy of Sciences (KJCX2-YW-N28)the Ocean Public Welfare Scientific Research Project, State Oceanic Administration of China (201005017)
文摘Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.
基金supported by the National Nature Science Foundation of China (Grant NSFC41374179)supported by NASA (NNX16AJ83G)
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.
文摘The effects of electron pressure gradient term in the generalized Ohm’ law is studied by 3 D MHD simulation code under condition of high plasma Beta and small ion inertial length. The results show that the electron pressure gradient term increases the velocity of electrons and ions, and therefore increases the field aligned current, finally leading to the increase of core magnetic field. Since the field aligned current is the principal way by which the magnetosphere is coupled with the ionosphere, the electron pressure gradient term enhances the coupling of magnetosphere ionosphere. The electron pressure gradient can also generate the dynamic Alfven wave. It is supposed that this Alfven wave may change the velocity of particles.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40774078, 40404012, 40474064 and 40674076, and the Visiting Scholar Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences.
文摘We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.