期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic contrast-enhanced magnetic resonance perfusion weighted imaging in astrocytomas: correlation with histopathology and immunohistochemistry
1
作者 陈军 黄书岚 +1 位作者 李涛 陈喜兰 《Journal of Medical Colleges of PLA(China)》 CAS 2005年第5期304-310,共7页
Objective:To investigate magnetic resonance perfusion weighted imaging and its relationship with the grading and the expression of vascular endothelial growth factor (VEGF) and angiogenesis in astrocytomas. Methods: A... Objective:To investigate magnetic resonance perfusion weighted imaging and its relationship with the grading and the expression of vascular endothelial growth factor (VEGF) and angiogenesis in astrocytomas. Methods: A collection of 34 patients with astrocytomas proved by surgery and pathology were examined by magnetic resonance imaging(MRI), with 26 cases of gradeⅠ-Ⅱ(low-grade) and 8 cases of grade Ⅲ-Ⅳ(high-grade). MR perfusion images were obtained with spin-echo echo planar imaging (SE-EPI) techniques. Expression of VEGF was examined by immunohistochemical method of streptavidin-biotin-peroxidase(SP). The vascular development was measured by micro-vascular density (MVD) which was immunostained with anti-factor Ⅷ-related antigen monoclonal antibody. Results: Both of the expression of VEGF and the angiogenesis in 34 cases of astrocytomas were significantly correlated to the maximum relative cerebral blood volume (Max rCBV) (r=0.604, P<0.001;r=0.625, P<0.001, respectively). The Max rCBV and the expression of VEGF, MVD in high-grade astrocytomas were significantly higher than that of in low-grade astrocytomas (t= 3.0, P=0.017; t=7.08, P=0.01;t=3.37,P=(0.011,) respectively). Conclusion: MR perfusion weighted imaging might be a valuable method in in vivo study of the angiogenesis of astrocytomas and evaluating their malignant degree and prognosis. 展开更多
关键词 GLIOMA magnetic resonance imaging magnetic resonance perfusion weighted imaging vascular endothelial growth factor angiogenesis
下载PDF
Role of MR-DWI and MR-PWI in the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbits 被引量:5
2
作者 Qiang Zhang Mingmin Zhang +6 位作者 Zhaoxin Liu Baoqi Shi Fuliang Qi Haijiang Wang Yuan Lv Haijiao Jin Weijing Zhang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2014年第5期532-542,共11页
Objective: To detect the activity of tumor cells and tumor blood flow before and after the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbit models by using magnetic resonance diffusion-weighted imaging(M... Objective: To detect the activity of tumor cells and tumor blood flow before and after the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbit models by using magnetic resonance diffusion-weighted imaging(MR-DWI) and magnetic resonance perfusion weighted imaging(MR-PWI), and to evaluate the effectiveness and safety of the radiotherapy based on the changes in the MR-DWI and MR-PWI parameters at different treatment stages.Methods: A total of 56 rabbit models with implanted pulmonary VX-2 carcinoma were established, and then equally divided into treatment group and control group. MR-DWI and MR-PWI were separately performed using a Philips Acheiva 1.5T MRI machine(Philips, Netherland). MRI image processing was performed using special perfusion software and the WORKSPACE advanced workstation for MRI. MRDWI was applied for the observation of tumor signals and the measurement of apparent diffusion coefficient(ADC) values; whereas MR-PWI was used for the measurement of wash in rate(WIR), wash out rate(WOR), and maximum enhancement rate(MER). The radiation treatment was performed using Siemens PRIMUS linear accelerator. In the treatment group, the radiotherapy was performed 21 days later on a once weekly dosage of 1,000 c Gy to yield a total dosage of 5,000 c Gy.Results: The ADC parameters in the region of interest on DWI were as follows: on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values at the center and the edge of the lesions were 1.352 and 1.461 in the treatment group and control group(P〉0.05). During weeks 0-1 after treatment, the t values at the center and the edge of the lesions were 1.336 and 1.137(P〉0.05). During weeks 1-2, the t values were 1.731 and 1.736(P〈0.05). During weeks 2-3, the t values were 1.742 and 1.749(P〈0.05). During weeks 3-4, the t values were 2.050 and 2.127(P〈0.05). During weeks 4-5, the t values were 2.764 and 2.985(P〈0.05). The ADC values in the treatment group were significantly higher than in the control group. After the radiotherapy(5,000 c Gy), the tumors remarkably shrank, along with low signal on DWI, decreased signal on ADC map, and remarkably increased ADC values. As shown on PWI, on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values of the WIR, WOR, and MER at the center of the lesions were 1.05, 1.31, and 1.33 in the treatment group and control group(P〉0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.35, 1.07, and 1.51(P〉0.05). During weeks 0-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 1.821, 1.856, and 1.931(P〈0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.799, 2.016, and 2.137(P〈0.05). During weeks 1-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.574, 2.156, and 2.059(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 1.869, 2.058, and 2.057(P〈0.05). During weeks 2-3 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.461, 2.098, and 2.739(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.951, 2.625, and 2.154(P〈0.05). During weeks 3-4 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.584, 2.107, and 2.869(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.057, 2.637, and 2.951(P〈0.05). During weeks 4-5 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.894, 2.827, and 3.285(P〈0.05) and the t values of the WIR, WOR, andMER at the edge of the lesions were 3.45, 3.246, and 3.614(P〈0.05). After the radiotherapy(500 c Gy), the tumors shrank on the T1 WI, WIR, WOR, and MER; meanwhile, the PWI parameter gradually decreased and reached its minimum value.Conclusions: MR-DWI and MR-PWI can accurately and directly reflect the inactivation of tumor cells and the tumor hemodynamics in rabbit models with implanted pulmonary VX-2 carcinoma, and thus provide theoretical evidences for judging the clinical effectiveness of radiotherapy for the squamous cell carcinoma of the lung. 展开更多
关键词 magnetic resonance diffusion-weighted imaging(MR-DWI) magnetic resonance perfusion weighted imaging(MR-PWI) implanted pulmonary VX-2 carcinoma in rabbits RADIOTHERAPY
下载PDF
Perfusion MR imaging and proton MR spectroscopy in a case of dysembryroplastic neuroepithelial tumor 被引量:5
3
作者 WANGLiang LIKun-cheng +3 位作者 CHENLi LUDe-hong ZHANGGuo-jun LIYong-jie 《Chinese Medical Journal》 SCIE CAS CSCD 2005年第13期1134-1136,共3页
Dysembryoplastic neuroepithelial tumors ( DNTs ), which were first describedby Daumas-Duport in 1988, are one of rare benign tumors usually associated with medicallyintractable seizures which date from childhood. The ... Dysembryoplastic neuroepithelial tumors ( DNTs ), which were first describedby Daumas-Duport in 1988, are one of rare benign tumors usually associated with medicallyintractable seizures which date from childhood. The clinical, pathologic and neuroradiologicfindings of DNT have been described. Recent advances in magnetic resonance imaging ( MRI) technologyallow the acquisition of cerebral microcirculation parameters by perfusion weighted imaging ( PWI)and brain metabolic indices by MR spectroscopy (MRS) . Several studies have shown the utility of PWIand MRS can improve the diagnostic accuracy of brain tumor, we combine the two techniques toevaluate a case with DNT and suggest that wider application of these techniques is warranted. 展开更多
关键词 dysembryoplastic neuroepithelial tumor perfusion weighted magnetic resonance imaging magnetic resonance spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部