A simple, rapid and sensitive method termed as magnetic solid phase extraction (MSPE) combined with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) has been proposed for the determination of ...A simple, rapid and sensitive method termed as magnetic solid phase extraction (MSPE) combined with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) has been proposed for the determination of trace amounts of chlorpromazine (CPZ) in water, urine and plasma samples. The separation and determination was performed on a C18 column under the optimal chromatographic conditions. Several factors influencing the extraction efficiency of CPZ, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time, sample volume and desorption conditions, were studied and optimized. Under the optimal MSPE conditions, the extraction percentage of CPZ was 74%, 27% and 16% in water, urine and plasma samples, respectively. The limits of detection (LODs) of the proposed approach were 0.1, 5.0 and 10ng/mL in water, urine and plasma samples, respectively. The relative standard deviations (RSDs) based on five replicate determinations at 10 ng/mL level of CPZ was 1.2%. Good linear behaviors over the investigated concentration ranges (0.25-300 ng/mL) with good coefficient of determination, R2 〉 0.9998, were obtained. Good spike recoveries with relative errors less than 9.0% were obtained when applying the proposed method to water, urine and plasma samples.展开更多
文摘A simple, rapid and sensitive method termed as magnetic solid phase extraction (MSPE) combined with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) has been proposed for the determination of trace amounts of chlorpromazine (CPZ) in water, urine and plasma samples. The separation and determination was performed on a C18 column under the optimal chromatographic conditions. Several factors influencing the extraction efficiency of CPZ, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time, sample volume and desorption conditions, were studied and optimized. Under the optimal MSPE conditions, the extraction percentage of CPZ was 74%, 27% and 16% in water, urine and plasma samples, respectively. The limits of detection (LODs) of the proposed approach were 0.1, 5.0 and 10ng/mL in water, urine and plasma samples, respectively. The relative standard deviations (RSDs) based on five replicate determinations at 10 ng/mL level of CPZ was 1.2%. Good linear behaviors over the investigated concentration ranges (0.25-300 ng/mL) with good coefficient of determination, R2 〉 0.9998, were obtained. Good spike recoveries with relative errors less than 9.0% were obtained when applying the proposed method to water, urine and plasma samples.