期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Current-Induced Magnetic Switching in an L1_(0) FePt Single Layer with Large Perpendicular Anisotropy Through Spin–Orbit Torque
1
作者 Kaifeng Dong Chao Sun +10 位作者 Laizhe Zhu Yiyi Jiao Ying Tao Xin Hu Ruofan Li Shuai Zhang Zhe Guo Shijiang Luo Xiaofei Yang Shaoping Li Long You 《Engineering》 SCIE EI CAS 2022年第5期55-61,共7页
In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(... In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT. 展开更多
关键词 L1_(0)FePt SOT Inversion asymmetry magnetic switching Perpendicular anisotropy
下载PDF
Temperature dependence of multi-jump magnetic switching process in epitaxial Fe/MgO(001) films
2
作者 胡泊 何为 +5 位作者 叶军 汤进 张永圣 Syed Sheraz Ahmad 张向群 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期34-39,共6页
Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-... Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KUare responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90°domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/MgO(001) films at different temperatures. 展开更多
关键词 multi-jump magnetic switching process magnetoresistance domain wall
下载PDF
Design Method of Reversely Switched Dynistor Based Pulse Circuit Without Magnetic Switch
3
作者 Yicheng Pi Lin Liang Xiaoxue Yan 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期306-314,共9页
In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method o... In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method of designing a RSD-based pulse circuit without a magnetic switch is proposed.In the pulse circuit,a RBDT(reverse blocking diode thyristor)is used to separate the two capacitors and provide an energy branch.The pre-charge time of the RSD can be guaranteed by the energy conversion between the capacitors and inductors,instead of the saturation of the magnetic switch.In addition,the energy which is reused to trigger the RSD is based on an inductor.The pulse circuit is evaluated by simulations and practical experiments.According to the experimental results,the factors affecting the load pulse current and triggering of the RSD and RBDT are studied.Meanwhile,a method to reduce the current in the trigger switch,which is a potential problem in the pulse circuit,is proposed. 展开更多
关键词 magnetic switch pulse power circuit reversely switched dynistor(RSD) reverse blocking diode thyristor(RBDT)
原文传递
Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir_(20)Mn_(80)
4
作者 熊丹荣 蒋宇昊 +7 位作者 朱道乾 杜奥 郭宗夏 卢世阳 王春旭 夏清涛 朱大鹏 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期648-654,共7页
Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The ma... Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications. 展开更多
关键词 non-collinear antiferromagnets anomalous Hall effect magnetization switching spin–orbit torque
下载PDF
Reversible light-driven magnetic switching of salen cobalt complex
5
作者 Song Wan Mengqi Li +4 位作者 Zhipeng Zhang Hancheng Xi Hong Yang Qianfu Luo Wei-Hong Zhu 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第9期1191-1197,共7页
Spin-crossover(SCO)metal complexes are expected to be widely used in data storage materials,display devices and sensors.Although a lot of spin-crossover photoswitches have been developed,the reversible photomodulation... Spin-crossover(SCO)metal complexes are expected to be widely used in data storage materials,display devices and sensors.Although a lot of spin-crossover photoswitches have been developed,the reversible photomodulation cases that work at room temperature are limited.Herein,a novel cobalt complex o-1-Co(II)wherein the salen unit bridges with bis-diarylethene has been designed as switch to construct"off-on"logic operation at room temperature.The complex o-1-Co(II)displays an abrupt,reversible and hysteretic spin crossover(T1/2↓=166 K,T1/2↑=177 K,andΔT1/2=11 K)between the high-spin(HS)and low-spin(LS)states.Meanwhile,photocyclization of o-1-Co(II)with UV light produces a photoresponsive closed form c-1-Co(II),which always stays at low-spin without SCO at all.Moreover,the magnetic switching of the complex can also be achieved with redox reactions between Co(II)and Co(III). 展开更多
关键词 PHOTOCHROMISM DIARYLETHENE salen complex SPIN-CROSSOVER magnetic switch
原文传递
Thermal control magnetic switching dominated by spin reorientation transition in Mn-doped PrFeO_(3) single crystals
6
作者 Wencheng Fan Haiyang Chen +7 位作者 Gang Zhao Xiaoxuan Ma Ramki Chakaravarthy Baojuan Kang Wenlai Lu Wei Ren Jincang Zhang Shixun Cao 《Frontiers of physics》 SCIE CSCD 2022年第3期35-41,共7页
Spin reorientation transition (SRT) has attracted substantial attention due to its important role in the ultrafast control of spins. However, the transition temperature is usually too low for its practical application... Spin reorientation transition (SRT) has attracted substantial attention due to its important role in the ultrafast control of spins. However, the transition temperature is usually too low for its practical applications. Here, we demonstrate the ability to modulate the SRT temperature in PrFe_(1−x)Mn_(x)O_(3) single crystals from 196 K to 317 K across the room temperature by varying the Mn concentration. Interestingly, the Γ_(4) to Γ_(1) spin reorientation of the Mn-doped PrFeO_(3) is distinct from the Γ_(4) to Γ_(2) spin reorientation transition as in the parent material. Because of the coupling between rare-earth ions and transition-metal ions in determining the SRT temperature, the demonstrated control scheme of spin reorientation transition temperature by Mn-doping is expected to be used in temperature control magnetic switching devices and applicable to many other rare-earth orthoferrites. 展开更多
关键词 magnetic switching spin reorientation transition perovskite oxides
原文传递
Electromagnetic Performance Analysis of Flux-Switching Permanent Magnet Tubular Machine with Hybrid Cores 被引量:1
7
作者 Shaopeng Wang Chengcheng Liu +3 位作者 Youhua Wang Gang Lei Youguang Guo Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第1期43-52,共10页
The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part ... The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part of stator cores are replaced by soft magnetic composite(SMC)cores,and the lamination direction of the silicon steel sheet in stator cores have be changed.The eddy current loss of the machine with hybrid cores will be reduced greatly as the magnetic flux will not pass through the silicon steel sheet vertically.In order to reduce the influence of end effect,the unequal stator width design method is proposed.With the new design,the symmetry of the permanent magnet flux linkage has been improved greatly and the cogging force caused by the end effect has been reduced.Both 2-D and 3-D finite element methods(FEM)are applied for the quantitative analysis. 展开更多
关键词 Flux switching permanent magnet tubular machine soft magnetic composite(SMC) hybrid cores unequal width stator finite element method(FEM).
下载PDF
Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
8
作者 郝润润 张昆 +4 位作者 李迎港 曹强 张学莹 朱大鹏 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期101-106,共6页
Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the gi... Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices. 展开更多
关键词 MAGNETORESISTANCE in-plane magnetization switching electrical detection
下载PDF
Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
9
作者 谢宏斐 常宇晗 +4 位作者 郭玺 张健荣 崔宝山 左亚路 席力 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期509-514,共6页
The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,th... The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect. 展开更多
关键词 spin Hall effect orbital Hall effect magnetization switching
下载PDF
Optimal Matching of Magnetic Pulse Compressor 被引量:2
10
作者 苏建仓 孙鉴 +2 位作者 刘国治 刘纯亮 丁臻捷 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期229-233,共5页
Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission... Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses. 展开更多
关键词 magnetic pulse compressor magnetic switch optimal matching time
下载PDF
Experimental Study of Reversely Switched Dynistor Discharge Based on Gap Breakdown Load
11
作者 尚超 梁琳 +2 位作者 余岳辉 吴拥军 李海亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第1期121-124,共4页
Breakdown characteristics of a gap breakdown load was investigated in this paper, and a reversely switched dynistor (RSD) discharge circuit was designed based on the load. Based on the characteristics of the load, t... Breakdown characteristics of a gap breakdown load was investigated in this paper, and a reversely switched dynistor (RSD) discharge circuit was designed based on the load. Based on the characteristics of the load, the RSD discharge circuit was improved and optimized. The volume of the magnetic switch was reduced. To protect the thyristor and RSD, a diode was anti- parallely connected with the thyristor, which reduced the time requirement when a power voltage was applied to RSD. Experimental results show the circuit designed in this paper can switch a high voltage and high current smoothly, and allows the power voltage to change in a wider range. 展开更多
关键词 RSD semiconductor switch pulsed power magnetic switch gap breakdown
下载PDF
Voltage control of magnetization switching and dynamics
12
作者 文宏玉 夏建白 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期443-447,共5页
The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values... The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values of magnetic moment components are critical for the switching effect, which should satisfy a definite condition. The external magnetic field which affects only the oscillation period should be comparable to the internal magnetic field. If the external magnetic field is too small, the switching effect will disappear. The precessions of mx and my are the best for the tilt angle of the external magnetic field θt = 0?, i.e., the field is perpendicular to the sample plane. 展开更多
关键词 magnetic switching voltage control spin transfer torque Landau-Lifshitz-Gilbert (LLG) equa- tion
下载PDF
First-order reversal curve investigated magnetization switching in Pd/Co/Pd wedge film
13
作者 李岩 何为 +5 位作者 孙瑞 弓子召 李娜 Qeemat Gul 张向群 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期472-475,共4页
The magnetization switching plays an essential role in spintronic devices.In this study,a Pd(3 nm)/Co(0.14–1.68 nm)/Pd(5 nm) wedge film is deposited on an Mg O(111) substrate by molecular beam epitaxy.We inve... The magnetization switching plays an essential role in spintronic devices.In this study,a Pd(3 nm)/Co(0.14–1.68 nm)/Pd(5 nm) wedge film is deposited on an Mg O(111) substrate by molecular beam epitaxy.We investigate the polar magneto-optical Kerr effect(MOKE) and carry out the first-order reversal curve(FORC) measurements.For the wedge system,it is observed that the Co thickness could drive the spin reorientation transition(SRT) from out-of-plane to in-plane.Meanwhile,we find the different types of magnetization switchings in the continuous SRT process,which can originate from the formation of different magnetic compositions.Our work provides the possibility of tuning the interfacial effect,and paves the way to analyzing magnetization switching. 展开更多
关键词 wedge film MOKE FORC magnetization switching
下载PDF
Field-induced Néel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
14
作者 王鹏 赵辉 +3 位作者 栾仲智 夏思宇 丰韬 周礼繁 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期481-486,共6页
The spin Hall magnetoresistance(SMR)effect in Pt/Gd_(3)Fe_(5)O_(12)(Gd IG)bilayers was systematically investigated.The sign of SMR changes twice with increasing magnetic field in the vicinity of the magnetization comp... The spin Hall magnetoresistance(SMR)effect in Pt/Gd_(3)Fe_(5)O_(12)(Gd IG)bilayers was systematically investigated.The sign of SMR changes twice with increasing magnetic field in the vicinity of the magnetization compensation point(TM)of Gd IG.However,conventional SMR theory predicts the invariant SMR sign in the heterostructure composed of a heavy metal film in contact with a ferromagnetic or antiferromagnetic film.We conclude that this is because of the significant enhancement of the magnetic moment of the Gd sub-lattice and the unchanged moment of the Fe sub-lattice with a relatively large field,meaning that a small net magnetic moment is induced at TM.As a result,the Néel vector aligns with the field after the spin-flop transition,meaning that a bi-reorientation of the Néel vector is produced.Theoretical calculations based on the Néel’s theory and SMR theory also support our conclusions.Our findings indicate that the Néel-vector direction of a ferrimagnet can be tuned across a wide range by a relatively low external field around TM. 展开更多
关键词 spin Hall magnetoresistance FERRIMAGNETS magnetic insulators magnetization switching
下载PDF
Perpendicular magnetization switching by large spin-orbit torques from sputtered Bi2Te3
15
作者 郑臻益 张悦 +9 位作者 朱道乾 张昆 冯学强 何宇 陈磊 张志仲 刘迪军 张有光 Pedram Khalili Amiri 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期215-220,共6页
Spin-orbit torque(SOT)effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices.Recently,topological insulators(TIs)have gained extensive attentio... Spin-orbit torque(SOT)effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices.Recently,topological insulators(TIs)have gained extensive attention,as they are demonstrated to maintain a large effective spin Hall angle(θeff SH),even at room temperature.However,molecular beam epitaxy(MBE),as a precise deposition method,is required to guarantee favorable surface states of TIs,which hinders the prospect of TIs towards industrial application.In this paper,we demonstrate that Bi2Te3 films grown by magnetron sputtering can provide a notable SOT effect in the heterostructure with perpendicular magnetic anisotropy CoTb ferrimagnetic alloy.By harmonic Hall measurement,a high SOT efficiency(8.7±0.9 Oe/(10^9 A/m^2))and a largeθ^eff SH(3.3±0.3)are obtained at room temperature.Besides,we also observe an ultra-low critical switching current density(9.7×10^9 A/m^2).Moreover,the low-power characteristic of the sputtered Bi2Te3 film is investigated by drawing a comparison with different sputtered SOT sources.Our work may provide an alternative to leverage chalcogenides as a realistic and efficient SOT source in future spintronic devices. 展开更多
关键词 spin-orbit torque sputtered topological insulator FERRIMAGNET magnetization switching
下载PDF
Multiple modes of perpendicular magnetization switching scheme in single spin-orbit torque device
16
作者 刘桐汐 王昭昊 +4 位作者 王旻 王朝 吴比 刘伟强 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期283-287,共5页
Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetizatio... Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future. 展开更多
关键词 spin-orbit torque(SOT) field-like torque magnetization switching perpendicular magnetization
下载PDF
Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
17
作者 郭晓斌 李栋 席力 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期45-55,共11页
Magnetization manipulation by an electric field(E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and ... Magnetization manipulation by an electric field(E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and spintronic devices, due to the ultra-low power consumption of the process. In this review, we summarize the recent progress in E-field controlled magnetism in ferromagnetic/ferroelectric heterostructures with an emphasis on strain-mediated converse magnetoelectric coupling. Firstly, we briefly review the history, the underlying theory of the magnetoelectric coupling mechanism, and the current status of research. Secondly, we illustrate the competitive energy relationship and volatile magnetization switching under an E-field. We then discuss E-field modified ferroelastic domain states and recent progress in non-volatile manipulation of magnetic properties. Finally, we present the pure E-field controlled 180° in-plane magnetization reversal and both E-field and current modified 180° perpendicular magnetization reversal. 展开更多
关键词 electric field volatile and non-volatile magnetization switching
下载PDF
SIMULATION OF THE MAGNETIZATION REVERSAL PROCESS OF RECTANGLE-SHAPED NiFe FILM ELEMENTS UNDER AN ORTHOGONAL MAGNETIC FIELD
18
作者 W.L. Zhang R.J. Tang W.X. Zhang B. Peng H. C. Jiang H.W. Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期642-646,共5页
The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Diffe... The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements. 展开更多
关键词 NiFe film element MICROmagneticS aspect ratio magnetization reversal switching field
下载PDF
Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator 被引量:2
19
作者 陈绒 杨建华 +1 位作者 程新兵 潘子龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第6期95-101,共7页
As a combination device for a step-up pulse transformer and a magnetic switch,the saturable pulse transformer is widely used in pulsed-power and plasma technology.A fractional-turn ratio saturable pulse transformer is... As a combination device for a step-up pulse transformer and a magnetic switch,the saturable pulse transformer is widely used in pulsed-power and plasma technology.A fractional-turn ratio saturable pulse transformer is constructed and analyzed in this paper.Preliminary experimental results show that if the primary energy storage capacitors are charged to 300 V,an output voltage of about 19 kV can be obtained across the capacitor connected to the secondary windings of a fractional-tum ratio saturable pulse transformer.Theoretical and experimental results reveal that this kind of pulse transformer is not only able to integrate a step-up transformer and a magnetic switch into one device,but can also lower the saturable inductance of its secondary windings,thus leading to the relatively high step-up ratio of the pulse transformer.Meanwhile,the application of the fractional-turn ratio saturable pulse transformer in a μs range pulse modulator as a voltage step-up device and main switch is also included in this paper.The demonstrated experiments display that an output voltage with an amplitude of about 29 kV,and a 1.6 μs pulse width can be obtained across a 3500 Ω resistive load,based on a pulse modulator,if the primary energy storage capacitors are charged to 300 V.This compact fractional-turn ratio saturable pulse transformer can be applied in many other fields such as surface treatment,corona plasma generation and dielectric barrier discharge. 展开更多
关键词 fractional-turn ratio saturable transformer magnetic switch pulse modulator
下载PDF
A Molecular Crystal Shows Multiple Correlated Magnetic and Ferroelectric Switchings
20
作者 Yun Li Shu-Qi Wu +4 位作者 Jin-Peng Xue Xiao-Lei Wang Osamu Sato Zi-Shuo Yao Jun Tao 《CCS Chemistry》 CAS 2021年第9期2464-2472,共9页
Simultaneous control of the magnetic and electric properties of materials is crucial for their application in next-generation memory and sensor devices.Herein,we report a single-crystal Co(II)complex that exhibits unp... Simultaneous control of the magnetic and electric properties of materials is crucial for their application in next-generation memory and sensor devices.Herein,we report a single-crystal Co(II)complex that exhibits unprecedented two-step magnetic switching accompanied by paraelectric–ferroelectric–paraelectric phase transition.The ferroelectricity of the material is governed by changes in the directionality of the sulfate dianions therein that trigger nonpolar–polar–nonpolar variation of the crystal symmetry and induce slight structural changes in the Co(II)complex. 展开更多
关键词 molecular ferroelectric magnetic switching phase transition symmetry breaking CO(II)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部