Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and colle...Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF.展开更多
Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Ma...Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer(malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal(VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.展开更多
Accurate detection of a magnetic island in real time is one of the important issues for the tearing mode(TM) and neoclassical tearing mode(NTM) control.This paper presents a real-time detection system for the magn...Accurate detection of a magnetic island in real time is one of the important issues for the tearing mode(TM) and neoclassical tearing mode(NTM) control.This paper presents a real-time detection system for the magnetic island of NTM control in the EAST Plasma Control System(PCS).Diagnosis is based on magnetic periodic perturbation and electron temperature fluctuation caused by the magnetic island.Therefore,a Mirnov measurement has been selected to calculate the island's parameters,such as island width,frequency of island rotation,and toroidal number.The electron cyclotron emission(ECE) system can detect the island position,which is calculated by two fast detection algorithms called correlation analysis and Hilbert transform.For future NTM control,real-time equilibrium reconstruction(rt-EFIT) is needed to locate the rational q-surface where the island is detected.This fast detection system is able to detect an island within 3 ms.It can be integrated into PCS to provide effective parameters of the island for NTM control by using EC resonance heating(ECRH) in the next experiment of EAST.展开更多
Doppler velocities observed by the Rankin Inlet (RKN) PolarDARN radar are assessed with a focus on data in the beams oriented roughly along the magnetic meridian. Hourly scatter plots for every month are built. They...Doppler velocities observed by the Rankin Inlet (RKN) PolarDARN radar are assessed with a focus on data in the beams oriented roughly along the magnetic meridian. Hourly scatter plots for every month are built. They are shown to vary widely, with median values showing very clear magnetic local time variation with maximum magnitude during pre-noon and pre-midnight hours. The histograms contain a significant amount of very small velocity data that dominates at farther ranges and during the daytime. Near noon data show generally antisunward flows but at large ranges/magnetic latitudes and very close to noon, sunward flows occur for periods of positive IMF Bz. The reverse flows are stronger during spring equinox. The velocity magnitude was found to depend linearly on the IMF Be and interplanetary electric field. Velocities are often found to be smaller than those expected from the statistical convection model of Ruohoniemi and Greenwald -1996.展开更多
A new empirical model of plasmapause location as functions of magnetic local time and geomagnetic indices has been developed based on the observations from THEMIS mission. We use the two-year data of electron density ...A new empirical model of plasmapause location as functions of magnetic local time and geomagnetic indices has been developed based on the observations from THEMIS mission. We use the two-year data of electron density inferred from spacecraft potential to identify the plasmapause crossings and create a database of plasmapause locations. The database is further used to build up an empirical model of plasmapause related to magnetic local time based on the equation from O'Brien and Moldwin(2003). The new model is compared with previous plasmapause location models. It is found that our newly developed model is the best in predicting plasmapause locations among the existing models. The models based on Kp and Dst indices are better than the model based on AE index, suggesting that the plasmapause location is controlled by large scale convection of the magnetosphere.展开更多
Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing.In this article, we realized and benchmarked a quantum Hamiltonian identification algorithm recently proposed(Zhang...Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing.In this article, we realized and benchmarked a quantum Hamiltonian identification algorithm recently proposed(Zhang and Sarovar, 2014). we realized the algorithm on a liquid nuclear magnetic resonance quantum information processor using two types of working media with different forms of Hamiltonian. Our experiment realized the quantum identification algorithm based on free induction decay signals. We also showed how to process data obtained in a practical experiment. We studied the influence of decoherence by numerical simulations. Our experiments and simulations demonstrate that the algorithm is effective and robust.展开更多
The neutrino detector for the Jiangmen Underground Neutrino Observatory(JUNO) requires a large number of photomultiplier tubes(PMTs), including 15000 MCP PMTs and 5000 dynode PMTs. The TTS(transit time spread) o...The neutrino detector for the Jiangmen Underground Neutrino Observatory(JUNO) requires a large number of photomultiplier tubes(PMTs), including 15000 MCP PMTs and 5000 dynode PMTs. The TTS(transit time spread) of the PMTs is very important for vertex and track reconstruction of the neutrinos in the detector. In this paper, we study the TTS of a 20-inch dynode PMT(R12860) from Hamamatsu for different high voltage, light intensity, light spot size and different photocathode regions. The impact from Earth's magnetic field is also studied.The results achieved in this paper will be very useful for the JUNO experiment.展开更多
基金Supported by the National Natural Science Foundation of China(51306104)
文摘Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF.
文摘Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer(malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal(VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB103000,2012GB103000,and2012GB103002)National Natural Science Foundation of China(No.11205200)
文摘Accurate detection of a magnetic island in real time is one of the important issues for the tearing mode(TM) and neoclassical tearing mode(NTM) control.This paper presents a real-time detection system for the magnetic island of NTM control in the EAST Plasma Control System(PCS).Diagnosis is based on magnetic periodic perturbation and electron temperature fluctuation caused by the magnetic island.Therefore,a Mirnov measurement has been selected to calculate the island's parameters,such as island width,frequency of island rotation,and toroidal number.The electron cyclotron emission(ECE) system can detect the island position,which is calculated by two fast detection algorithms called correlation analysis and Hilbert transform.For future NTM control,real-time equilibrium reconstruction(rt-EFIT) is needed to locate the rational q-surface where the island is detected.This fast detection system is able to detect an island within 3 ms.It can be integrated into PCS to provide effective parameters of the island for NTM control by using EC resonance heating(ECRH) in the next experiment of EAST.
基金supported by NSERC Discovery grant to AVK and the University of Saskatchewan graduate stipend to MG
文摘Doppler velocities observed by the Rankin Inlet (RKN) PolarDARN radar are assessed with a focus on data in the beams oriented roughly along the magnetic meridian. Hourly scatter plots for every month are built. They are shown to vary widely, with median values showing very clear magnetic local time variation with maximum magnitude during pre-noon and pre-midnight hours. The histograms contain a significant amount of very small velocity data that dominates at farther ranges and during the daytime. Near noon data show generally antisunward flows but at large ranges/magnetic latitudes and very close to noon, sunward flows occur for periods of positive IMF Bz. The reverse flows are stronger during spring equinox. The velocity magnitude was found to depend linearly on the IMF Be and interplanetary electric field. Velocities are often found to be smaller than those expected from the statistical convection model of Ruohoniemi and Greenwald -1996.
基金supported by the National Natural Science Foundation of China(Grant Nos.41104109,41274166)the Specialized Research Fund for State Space Weather Key Laboratories(Grant No.201203FSK05)
文摘A new empirical model of plasmapause location as functions of magnetic local time and geomagnetic indices has been developed based on the observations from THEMIS mission. We use the two-year data of electron density inferred from spacecraft potential to identify the plasmapause crossings and create a database of plasmapause locations. The database is further used to build up an empirical model of plasmapause related to magnetic local time based on the equation from O'Brien and Moldwin(2003). The new model is compared with previous plasmapause location models. It is found that our newly developed model is the best in predicting plasmapause locations among the existing models. The models based on Kp and Dst indices are better than the model based on AE index, suggesting that the plasmapause location is controlled by large scale convection of the magnetosphere.
基金supported by the National Natural Science Foundation of China(11175094 and 91221205)the National Basic Research Program of China(2011CB9216002)
文摘Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing.In this article, we realized and benchmarked a quantum Hamiltonian identification algorithm recently proposed(Zhang and Sarovar, 2014). we realized the algorithm on a liquid nuclear magnetic resonance quantum information processor using two types of working media with different forms of Hamiltonian. Our experiment realized the quantum identification algorithm based on free induction decay signals. We also showed how to process data obtained in a practical experiment. We studied the influence of decoherence by numerical simulations. Our experiments and simulations demonstrate that the algorithm is effective and robust.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA10011100)National Natural Science Foundation of China(U1431109,11265003)
文摘The neutrino detector for the Jiangmen Underground Neutrino Observatory(JUNO) requires a large number of photomultiplier tubes(PMTs), including 15000 MCP PMTs and 5000 dynode PMTs. The TTS(transit time spread) of the PMTs is very important for vertex and track reconstruction of the neutrinos in the detector. In this paper, we study the TTS of a 20-inch dynode PMT(R12860) from Hamamatsu for different high voltage, light intensity, light spot size and different photocathode regions. The impact from Earth's magnetic field is also studied.The results achieved in this paper will be very useful for the JUNO experiment.