Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by inco...Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by incorporating Fe304 nanoparticles and CdSe/ZnS quantum dots(QDs) into hyper-crosslinked microporous polymer micro- spheres(HCMPs) via the in situ coprecipitation method and swelling-diffusion. The HCMPs predominantly have mi- cropores, and their specific surface area is as high as 703.4 m2/g. The magnetic-fluorescent microspheres maintain the superparamagnetic behavior of Fe304, and the saturation magnetization reaches 38.6 A.m2/kg. Moreover, the composite microspheres exhibit an intense emission peak at 530 nm and achieve good fluorescence.展开更多
基金Supported by the National Natural Science Foundation of China(Nos. 11174075, 31303049).
文摘Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by incorporating Fe304 nanoparticles and CdSe/ZnS quantum dots(QDs) into hyper-crosslinked microporous polymer micro- spheres(HCMPs) via the in situ coprecipitation method and swelling-diffusion. The HCMPs predominantly have mi- cropores, and their specific surface area is as high as 703.4 m2/g. The magnetic-fluorescent microspheres maintain the superparamagnetic behavior of Fe304, and the saturation magnetization reaches 38.6 A.m2/kg. Moreover, the composite microspheres exhibit an intense emission peak at 530 nm and achieve good fluorescence.