Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The re...Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.展开更多
基金supported by the National Natural Science Foundation of China(No.19891180)
文摘Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.