期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进的半监督聚类在MEG脑机接口中的应用 被引量:1
1
作者 周丽娜 吕萌 《计算机应用》 CSCD 北大核心 2011年第2期416-419,共4页
脑磁信号(MEG)作为一种新的脑机接口(BCI)输入信号,含有手运动方向的模式信息。鉴于半监督聚类融合了训练数据先验知识的优势,提出一种基于训练中心的半监督模糊聚类算法。该算法分为降维和改进的半监督聚类,采用主成分分析和线性判别... 脑磁信号(MEG)作为一种新的脑机接口(BCI)输入信号,含有手运动方向的模式信息。鉴于半监督聚类融合了训练数据先验知识的优势,提出一种基于训练中心的半监督模糊聚类算法。该算法分为降维和改进的半监督聚类,采用主成分分析和线性判别分析将高维数据降到低维,改进的半监督聚类在对训练数据进行模糊聚类的基础上,将得到的聚类中心加权到测试数据聚类过程中,以增加测试数据聚类中心的鲁棒性。结果表明,该算法识别率较高,平均识别率达到了55.1%,优于BCI竞赛Ⅳ的最好结果46.9%。 展开更多
关键词 脑机接口 脑磁图 半监督 模糊聚类
下载PDF
基于CSP与WPD算法的脑磁信号特征提取研究 被引量:1
2
作者 李广勇 黄晓霞 《现代计算机》 2015年第12期3-6,19,共5页
针对两类人(精神病患者和正常人)的静息态脑磁信号(MEG)的分类问题,提出一种小波包分解(WPD)和共空间模式(CSP)相结合的特征提取方法。利用小波包对训练集的多路脑磁信号进行分解,再利用共空间模式算法对不同分解层子带的脑磁信号进行... 针对两类人(精神病患者和正常人)的静息态脑磁信号(MEG)的分类问题,提出一种小波包分解(WPD)和共空间模式(CSP)相结合的特征提取方法。利用小波包对训练集的多路脑磁信号进行分解,再利用共空间模式算法对不同分解层子带的脑磁信号进行特征提取,使用经典的K近邻算法进行特征值分类。仿真实验结果表明,使用低频段(0Hz^4.7Hz)的脑磁信号进行CSP分解,选择5个特征值进行分类,可以得到高达91.7%的正确率。实验证明该方法提取的特征比较明显,是脑磁信号特征提取的新思路。 展开更多
关键词 静息态 脑磁信号 共空间模式 小波包 K近邻分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部