With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow th...With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.展开更多
Multiply-connected Hall plates show different phenomena than singly connected Hall plates. In part I (published in Journal of Applied Physics and Mathematics), we discussed topologies where a stream function can be de...Multiply-connected Hall plates show different phenomena than singly connected Hall plates. In part I (published in Journal of Applied Physics and Mathematics), we discussed topologies where a stream function can be defined, with special reference to Hall/Anti-Hall bar configurations. In part II, we focus on topologies where no conventional stream function can be defined, like Corbino disks. If current is injected and extracted at different boundaries of a multiply-connected conductive region, the current density shows spiral streamlines at strong magnetic field. Spiral streamlines also appear in simply-connected Hall plates when current contacts are located in their interior instead of their boundary, particularly if the contacts are very small. Spiral streamlines and circulating current are studied for two complementary planar device geometries: either all boundaries are conducting or all boundaries are insulating. The latter case means point current contacts and it can be treated similarly to singly connected Hall plates with peripheral contacts through the definition of a so-called loop stream function. This function also establishes a relation between Hall plates with complementary boundary conditions. The theory is explained by examples.展开更多
文摘With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.
文摘Multiply-connected Hall plates show different phenomena than singly connected Hall plates. In part I (published in Journal of Applied Physics and Mathematics), we discussed topologies where a stream function can be defined, with special reference to Hall/Anti-Hall bar configurations. In part II, we focus on topologies where no conventional stream function can be defined, like Corbino disks. If current is injected and extracted at different boundaries of a multiply-connected conductive region, the current density shows spiral streamlines at strong magnetic field. Spiral streamlines also appear in simply-connected Hall plates when current contacts are located in their interior instead of their boundary, particularly if the contacts are very small. Spiral streamlines and circulating current are studied for two complementary planar device geometries: either all boundaries are conducting or all boundaries are insulating. The latter case means point current contacts and it can be treated similarly to singly connected Hall plates with peripheral contacts through the definition of a so-called loop stream function. This function also establishes a relation between Hall plates with complementary boundary conditions. The theory is explained by examples.