期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Fuzzy Hybrid Control of Vibration Attitude of Full Car via Magneto-rheological Suspensions 被引量:12
1
作者 LI Rui CHEN Weimin +1 位作者 LIAO Changrong DONG Xiaomin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期72-79,共8页
A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or... A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC. 展开更多
关键词 CAR magneto-rheological suspension vibration attitude fuzzy control hybrid damping control road test
下载PDF
Semi-active Sliding Mode Control of Vehicle Suspension with Magneto-rheological Damper 被引量:12
2
作者 ZHANG Hailong WANG Enrong +3 位作者 ZHANG Ning MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期63-75,共13页
The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, ... The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity (F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems. 展开更多
关键词 magneto-rheological damper vehicle suspension multi-objective performance semi-active sliding mode control FILTERING
下载PDF
Skyhook-based Semi-active Control of Full-vehicle Suspension with Magneto-rheological Dampers 被引量:11
3
作者 ZHANG Hailong WANG Enrong +2 位作者 MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期498-505,共8页
The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller ha... The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) fullvehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Boucwen hysteretic force-velocity (F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and handling safety of the proposed MR full-vehicle suspension are thus thoroughly evaluated by comparing with those of the passive full-vehicle suspension. The results show that the proposed controller can ideally improve multiobjective suspension performances of the ride comfort and handling safety. The proposed harmonic, rounded pulse and real road measured random signals with delay time and asymmetric amplitudes are suitable for accurately analyzing the vertical, pitch and roll motion properties of MR full-vehicle suspension system in a more realistic road excitation manner. This research has important theoretical significance for improving application study on the intelligent MR semi-active suspension. 展开更多
关键词 magneto-rheological damper skyhook policy semi-active control multi-objective performances full-vehicle suspension
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS PARTⅡ——EVALUATION OF SUSPENSION PERFORMANCE 被引量:5
4
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期45-52,共8页
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric d... The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness. 展开更多
关键词 magneto-rheological damper Asymmetric damping Semi-active control Vehicle suspension Multi-objective performance
下载PDF
The Knee Joint Design and Control of Above-knee Intelligent Bionic Leg Based on Magneto-rheological Damper 被引量:9
5
作者 Hua-Long Xie Ze-Zhong Liang +1 位作者 Fei Li Li-Xin Guo 《International Journal of Automation and computing》 EI 2010年第3期277-282,共6页
The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of ... The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of the four-bar link mechanism and the magneto-rheological (MR) damper are analyzed in detail. The fixed position of the MR damper is optimized and a virtual prototype of knee joint is given. In the end, the system model of kinematics, dynamics, and controller are given and a control experiment is performed. The control experiment indicates that the intelligent bionic leg with multi-axis knee is able to realize gait tracking of the amputee's healthy leg based on semi-active control of the MR damper. 展开更多
关键词 Knee joint above-knee intelligent bionic leg magneto-rheological damper.
下载PDF
A new variable stiffness absorber based on magneto-rheological elastomer 被引量:3
6
作者 董小闵 余淼 +1 位作者 廖昌荣 陈伟民 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期611-615,共5页
A new adaptive variable stiffness absorber was proposed based on a smart material, magnetorheological elastomer (MRE), and its vibration control performance was investigated. Before developing the proposed absorber, t... A new adaptive variable stiffness absorber was proposed based on a smart material, magnetorheological elastomer (MRE), and its vibration control performance was investigated. Before developing the proposed absorber, the MREs were firstly fabricated by curing a mixture of 704 silicon rubber, carbonyl iron particles and a small amount of silicone oil under an external magnetic field. Then the mechanical properties of the fabricated MREs were measured. On the basis of the measured mechanical characteristics, the MRE absorber was developed and its working characteristics were also tested under various input currents and excited frequencies. Finally, the control responses of a two-degree-of-freedom dynamic system with a MRE absorber were presented under a chirp input and used to evaluate the effectiveness of the MRE absorber. 展开更多
关键词 magneto-rheological ELASTOMER VARIABLE STIFFNESS ABSORBER
下载PDF
Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control 被引量:2
7
作者 YQ Ni ZG Ying ZH Chen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期345-356,共12页
Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoel... Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range. 展开更多
关键词 magneto-rheological elastomer (MRE) micro-vibration control EQUIPMENT composite structure sandwich beam stochastic excitation
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART Ⅰ——CONTROLLER SYNTHESIS AND EVALUATION 被引量:8
8
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJASubhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期13-19,共7页
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi... A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance. 展开更多
关键词 magneto-rheological damper Skyhook damping Semi-active control Vehicle suspension
下载PDF
Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation 被引量:1
9
作者 张海龙 王恩荣 +1 位作者 闵富红 张宁 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期100-110,共11页
The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD... The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. 展开更多
关键词 magneto-rheological damper HYSTERESIS Bouc-Wen model chaotic motions
下载PDF
Delay-dependent H_(2)/H_(∞) Control for Vehicle Magneto-rheological Semi-active Suspension 被引量:1
10
作者 CHEN Wuwei ZHU Maofei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1028-1034,共7页
The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handli... The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems. 展开更多
关键词 magneto-rheological semi-active suspension(MSAS) time-delay delay-dependent H2/H∞ state feedback control linear matrix inequality(LMI)
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART III—EXPERIMENTAL VALIDATION 被引量:2
11
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期56-63,共8页
A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, ... A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, and examine the validity of the proposed MR-damper model in a system surrounding. A real-time monitor is designed to assess and monitor the responses of the quarter-vehicle model in the HIL platform, and to select the excitation, controller synthesis, and the output displays. A drive current circuit hardware employing PID feedback technique is developed to compensate for the time delays from the servo-controller and drive current circuit, in which a small resistance is integrated in the current amplifier circuit to provide the feedback signal. The experiments were performed to measure the responses of the quarter-vehicle MR-suspension models with fixed current and the proposed semi-active MR-damping variations, under harmonic, rounded pulse and random road excitations. The measured data were compared with the corresponding model results to examine the model and controller validity, and revealed generally good agreements in the model and tested results and very little sensitivity of the tested responses to variations in the sprung mass. The HIL test results validate the effectiveness of the proposed skyhook-based semi-active asymmetric controller and its high robustness against the vehicle load variations in view of the intelligent vehicle suspension design. 展开更多
关键词 magneto-rheological damper Vehicle suspension Hardware-in-the-loop simulation
下载PDF
Vibration Behavior of a Sandwich Porous Elliptical Micro-Shell with a Magneto-Rheological Core Based on the Modified Couple Stress Theory
12
作者 A.Mohammadpour S.Jafari Mehrabadi +1 位作者 P.Yousefi H.Mohseni Monfared 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第6期1655-1698,共44页
Recently,the use of porous materials has grown widely in many structures,such as beams,plates,and shells.The characteristics of porous materials change in the thickness direction by different functions.This study has ... Recently,the use of porous materials has grown widely in many structures,such as beams,plates,and shells.The characteristics of porous materials change in the thickness direction by different functions.This study has investigated the free vibration analysis of a sandwich porous elliptical micro-shell with a magneto-rheological fluid(MRF)core for the first time.Initially,we examined the displacement of the middle layer’s macro-and micro-components,using Love’s shell theory.Next,we used the modified couple stress theory(MCST)to obtain the strain and symmetrical curvature tensors for the three layers.The Hamilton’s principle was implemented to derive the equations of motion.We also used the Galerkin’s method to solve the equations of motion,resulting in a system of equations in the form of a linear eigenvalue problem.By solving the governing equations,we obtained the various natural frequencies and loss factors of the elliptical micro-shell,and compared them with the results in earlier studies.Lastly,we investigated the effects of thickness,porosity distribution pattern,aspect ratio,length scale parameter,and magnetic field intensity on the natural frequency and loss factor of the micro-shell.The data accuracy was validated by comparing them with those of reputable previous articles. 展开更多
关键词 Elliptical micro shell free vibration magneto-rheological core modified couple stress theory sandwich porous material
原文传递
Research on Modeling and Fuzzy Control of Magneto-Rheological Intelligent Buffer System for Impact Load 被引量:3
13
作者 傅莉 林丽平 徐心和 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第5期567-572,共6页
So far the magneto-rheological(MR) effect mechanism of MR damper has not been known completely, especially in the impact load,and the problem becomes more complicated and difficult for analyzing.A set of characteristi... So far the magneto-rheological(MR) effect mechanism of MR damper has not been known completely, especially in the impact load,and the problem becomes more complicated and difficult for analyzing.A set of characteristic tests and parameters' identification are made to the MR damper by the experimental platform. The dynamical model of the damper is constructed based on the Bingham plastic model,and the buffer control strategy of aircraft undercarriage based on MR technology is established.Finally,the fuzzy control algorithm is applied to the process of automatic control for landing buffer of aircraft undercarriage.The simulation results show that the proposed MR damper pulley buffer can effectively recognize the impact energy.The research has a better application in the engineering. 展开更多
关键词 magneto-rheological fluid(MRF) impact load characteristic test parameter identification fuzzy control
原文传递
Modeling and Control of the Pulley Buffer System of Arresting Cable for Shipboard Aircraft Based on Magneto-Rheological Fluid 被引量:2
14
作者 傅莉 魏颖 +1 位作者 周彦凯 程涛 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第5期573-578,共6页
Taking the MK7-3 of USA hydraulic buffer arresting device as the research subject,the dynamical model for the shipboard aircraft arresting system is established,and the magneto-rheological(MR) damper is applied to pul... Taking the MK7-3 of USA hydraulic buffer arresting device as the research subject,the dynamical model for the shipboard aircraft arresting system is established,and the magneto-rheological(MR) damper is applied to pulley shock absorbers for shipboard aircraft block system.Due to the effect of the MR damper has not been known completely and so far MR damper model has not been defined,we use a set of characteristic test of the MR damper,through the process of parameters identification,to establish the dynamical model for the MR damper based on the Bingham plastic model.Then,the fuzzy control rules are designed,the buffer control for the pulley buffer of shipboard aircrafts is completed in touchdown moment based on MR technology. Compared with blocking device of hydraulic pulley buffer in the same condition,the simulations results show that the proposed MR pulley buffer can effectively recognize the impact energy for shipboard block system and reduce the pull peak of arresting cable.It improves significantly safety during landing of the air vehicles and lowers the risk of accidents. 展开更多
关键词 magneto-rheological fluid(MRF) shipboard aircraft pulley buffer parameter identification fuzzy control
原文传递
Impact Arresting Process Mechanical Modeling and Sliding Model Buffer Control Based on Magneto-Rheological Fluid
15
作者 傅莉 李彬彬 +2 位作者 陈新禹 胡为 席剑辉 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第6期684-691,共8页
The research on the form and control method of impact load arresting buffer has been an active topic in the field of buffer arresting system(BAS).It becomes significant on reducing the weight of arresting system,impro... The research on the form and control method of impact load arresting buffer has been an active topic in the field of buffer arresting system(BAS).It becomes significant on reducing the weight of arresting system,improving the hindered efficiency,and guaranteeing the security of BAS.The hydraulic hindered device of impact load is currently used in BAS.There are some problems.For example,the system needs large power sources.However,once the power of active hydraulic control system is turned off,there arise unpredictable security risks.An arresting form of semi-active control based on magneto-rheological damper(MRD) is proposed,and the mechanical model of the BAS is established.Meanwhile,the state equation of impact load BAS is established according to the characteristics of impact load buffer arresting,and its sliding model buffer control is achieved.Due to the chattering characteristic of the output signal of sliding mode controller,the method to prevent chattering is designed based on short-term energy and zero-crossing rate detection.For the model and chattering suppression of sliding model buffer control algorithms,simulation results show that the proposed state equation and the arresting model are reasonable,and the design of semi-active control algorithm is effective.On the condition of the buffer control system requirement and the accuracy,the proposed algorithms effectively control the chattering of sliding mode control algorithms,and improve the security of the BAS. 展开更多
关键词 arresting buffer semi-active control magneto-rheological damper(MRD) sliding mode control buffeting suppression
原文传递
Study of Magneto-Rheological Fluid Safe and Arming Device
16
作者 TANG Yu-juan WANG Jiong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S2期643-645,共3页
This paper puts forward the magneto-rheological fluid used in the fuze safe and arming system,realizing the time delay,ensuring the muzzle safety distance.The delay arming time model of a centrifugal MRF delay arming ... This paper puts forward the magneto-rheological fluid used in the fuze safe and arming system,realizing the time delay,ensuring the muzzle safety distance.The delay arming time model of a centrifugal MRF delay arming mechanism of fuze was established based on hydrodynamics formulae,reasonable hypothesis,speciality of MRF and fuze environmental parameters.The delay arming time formula was deduced.The model illustrates the relationship between delay arming time and projectile rotating speed,and that between diameter of discharge hole and viscosity of magneto-rheological fluid.According to the analysis,a new fuze delay arming device using MRF was proposed,which can be used in medium and large caliber fuze. 展开更多
关键词 magneto-rheological fluid delay arming time FUZE
原文传递
Semi-Active Control of Wave-Induced Vibration for Offshore Platforms by Use of MR Damper 被引量:8
17
作者 李华军 土树青 秘春艳 《China Ocean Engineering》 SCIE EI 2002年第1期33-40,共8页
The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore p... The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore platform is simplified to be a singled degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The external 'generalized' wave force is determined with a white noise via a designed filter. A semi-active control method based on optimal control theory is proposed considering that the yield stress of the MR damper can he varied continuously within a certain range. The dynamics of SDOF structure coupled with the MR damper is investigated. Numerical simulation demonstrates that the MR damper with this control strategy can significantly reduce the maximum responses and the root-mean-square (RMS) values. 展开更多
关键词 semi-active control offshore platform vibration reduction wave loading magneto-rheological damper
下载PDF
GENERALIZED ASYMMETRIC HYSTERESIS MODEL OF CONTROLLABLE MAGNETORHEOLOGICAL DAMPER FOR VEHICLE SUSPENSION ATTENUATION 被引量:9
18
作者 WangEnrong MaXiaoqing +1 位作者 SuChunyi RakhejaSubhash 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期301-305,共5页
A generalized model is synthesized to characterize the asymmetric hysteresisforce-velocity (F-v) properties of the magneto-rheological (MR) fluids damper. The model isrepresented as a function of the command current, ... A generalized model is synthesized to characterize the asymmetric hysteresisforce-velocity (F-v) properties of the magneto-rheological (MR) fluids damper. The model isrepresented as a function of the command current, excitation frequency, and displacement amplitude,based on the symmetric and asymmetric sigmoid functions. The symmetric hysteresis damping propertiesof the controllable MR-damper and properties of the conventional passive hydraulic damper can alsobe described by the proposed model. The validity of the model is verified by experiments, which showthat the results calculated from the model are consistent with the measured data. In addition, itis shown that the model applies to a wide vibration frequency range. The proposed model haspotential application in vehicle suspension design employing the symmetry MR-damper, and also indeveloping the asymmetry MR-damper especially for the vehicle suspension attenuation. 展开更多
关键词 magneto-rheological fluids damper Asymmetric characteristics Hysteresismodel
下载PDF
Studies on structural vibration control with MR dampers using μGA 被引量:1
19
作者 李宏男 常治国 宋钢兵 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期301-304,共4页
A new approach to reducing the seismic response of spatial structures with magneto-theological (MR) dampers is presented in this paper. The Genetic Algorithm with small populations (μGA) is used to optimize the c... A new approach to reducing the seismic response of spatial structures with magneto-theological (MR) dampers is presented in this paper. The Genetic Algorithm with small populations (μGA) is used to optimize the control for the MR dampers to reduce structural vibration, which is difficult to achieve using classical optimal control. The advantages of μGA are the use of global properties and that fewer conditions are required to obtain the optimal function. Numerical results demonstrate the effectiveness of the proposed method in reducing the seismic response of structures. 展开更多
关键词 eccentric structure semi-active control magneto-rheological (MR) damper genetic algorithm LINEARIZATION
下载PDF
GENERATION OF ASYMMETRIC F-v CHARACTERISTICS FOR SYMMETRIC MR DAMPERS 被引量:1
20
作者 WANG Enrong YE Biaoming +2 位作者 MA Xiaoqing SU Chunyi RAKHEJA Subhash  《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期237-242,共6页
An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in... An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in an asymmetric manner to excite the symmetric MR dampers by employing the “on-off” control law in response to the direction of velocity, and a smooth modulation function is developed without phase shift to suppress strong transients in the damping forces caused by the current-switching discontinuity. The effectiveness of the proposed algorithm is evaluated by analyzing the dynamic responses of a quarter-vehicle suspension system with a symmetric MR-damper by modulating the command current into the asymmetric manner. The simulation results show that the proposed algorithm could achieve a better compromise between the conflicting requirements of the asymmetric damping force ratio and the force-velocity curve smoothness, and the asymmetric damping MR-suspension design can ideally improve the road holding and ride performances of vehicle motion. The proposed algorithm can be generally incorporated with a controller synthesis to realize an intelligent vehicle suspension design with the symmetric MR dampers. 展开更多
关键词 magneto-rheological (MR) fluids damper Asymmetric F-ν characteristics SMOOTHNESS Vehicle suspension
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部