期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Memory-dependent magneto-thermoelasticity for perfectly conducting two-dimensional elastic solids with thermal shock
1
作者 Sarhan Y.Atwa Nantu Sarkar 《Journal of Ocean Engineering and Science》 SCIE 2019年第3期289-298,共10页
Recently,Yu et al.(2014)proposed a new model in generalized thermoelasticity based on heat conduction with the memory-dependent derivative.The magneto-thermoelastic responses in a perfectly conducting thermoelastic so... Recently,Yu et al.(2014)proposed a new model in generalized thermoelasticity based on heat conduction with the memory-dependent derivative.The magneto-thermoelastic responses in a perfectly conducting thermoelastic solid half-space is investigated in the context of the above new theory.Normal mode analysis together with an eigenvalue expansion technique is used to solve the resulting non-dimensional coupled governing equations.The obtained solutions are then applied to a specific problem for thermoelastic half-space whose boundary is subjected to a time-dependent thermal shock and zero stress.The effects of the kernel function,time-delay parameter,magnetic field and thermoelastic coupling parameter on the variations of different field quantities inside the half-space are analyzed graphically.The results show that these parameters has significant influence on the variations of the considered variables. 展开更多
关键词 magneto-thermoelasticity Memory-dependent derivative TIME-DELAY Normal mode analysis
原文传递
Study on generalized magneto-thermoelastic problems by FEM in time domain 被引量:10
2
作者 Xiaogeng Tian Yapeng Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第4期380-387,共8页
This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity... This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity problems with two relaxation times (i.e., the G-L theory) are derived using the principle of virtual work. For avoiding numerical complication involved in inverse Laplace and Fourier transformation and low precision thereof, the equations are solved directly in time-domain. As a numerical example, the derived equation is used to investigate the generalized magneto-thermoelastic behavior of a semi-infinite plate under magnetic field and subjecting to a thermal shock loading. The results demonstrate that FEM can faithfully predict the deformation of the plate and the induced magnetic field, and most importantly can reveal the sophisticated second sound effect of heat conduction in two-dimensional generalized thermoelastic solids, which is usually difficult to model by routine transformation methods. A peak can be observed in the distribution of stress and induced front and the magnitude of magnetic field at the heat wave the peak decreases with time, which can not be obtained by transformation methods. The new method can also be used to study generalized piezo-thermoelastic problems. 展开更多
关键词 Generalized magneto-thermoelasticity Finite element method Principle of virtual work Time domain Second sound effect
下载PDF
The Reflection of Magneto-Thermoelastic P and SV Waves at a Solid Half Space Using Dual-Phase-Lag Model
3
作者 Ahmed E.Abouelregal 《Advances in Applied Mathematics and Mechanics》 SCIE 2011年第6期745-758,共14页
The dual-phase-lag heat transfer model is employed to study the reflection phenomena of P and SV waves from a surface of a semi-infinite magnetothermoelastic solid.The ratios of reflection coefficients to that of inci... The dual-phase-lag heat transfer model is employed to study the reflection phenomena of P and SV waves from a surface of a semi-infinite magnetothermoelastic solid.The ratios of reflection coefficients to that of incident coefficients are obtained for P-and SV-wave cases.The results for partition of the energy for various values of the angle of incidence are computed numerically under the stress-free and rigidly fixed thermally insulated boundaries.The reflection coefficients are depending on the angle of incidence,magnetic field,phase lags and other material constants.Results show that the sum of energy ratios is unity at the interface.The results are discussed and depicted graphically. 展开更多
关键词 REFLECTION dual-phase-lag model thermoelastici waves partition of energy magneto-thermoelasticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部