Using a Gurevich-Krylov solution that describes the propagation of nonlinear magnetoacoustic waves in a cold plasma, we construct solutions of various other nonlinear systems. These include, for example, Madelung flui...Using a Gurevich-Krylov solution that describes the propagation of nonlinear magnetoacoustic waves in a cold plasma, we construct solutions of various other nonlinear systems. These include, for example, Madelung fluid, reaction diffusion, Broer-Kaup, Boussinesq, and Hamilton-Jacobi-Bellman systems. We also construct dilaton field solutions for a Jackiw-Teitelboim black hole with a negative cosmological constant. The black hole metric corresponds to a cold plasma metric by way of a change of variables, and the plasma dilatons and cosmological constant also have an expression in terms of parameters occurring in the Gurevich-Krylov solution. A dispersion relation, moreover, links the magnetoacoustic system and a resonance nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equation.展开更多
文摘Using a Gurevich-Krylov solution that describes the propagation of nonlinear magnetoacoustic waves in a cold plasma, we construct solutions of various other nonlinear systems. These include, for example, Madelung fluid, reaction diffusion, Broer-Kaup, Boussinesq, and Hamilton-Jacobi-Bellman systems. We also construct dilaton field solutions for a Jackiw-Teitelboim black hole with a negative cosmological constant. The black hole metric corresponds to a cold plasma metric by way of a change of variables, and the plasma dilatons and cosmological constant also have an expression in terms of parameters occurring in the Gurevich-Krylov solution. A dispersion relation, moreover, links the magnetoacoustic system and a resonance nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equation.