In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in...In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant infl...Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
The two-dimensional magneto-hydrodynamic (MHD) equations are considered in this article. Viscous approximations are used to obtain the local existence and uniqueness of the classical solution. When the viscous term ...The two-dimensional magneto-hydrodynamic (MHD) equations are considered in this article. Viscous approximations are used to obtain the local existence and uniqueness of the classical solution. When the viscous term vanishes, the convergence rates, a main problem in turbulence, are also discussed. Moreover, a blow-up criterion for our classical solution is established in terms of the magnetic fields.展开更多
In this article, regularity criteria for the 3D magnetohydrodynamic equations are investigated. Some sufficient integrability conditions on two components or the gradient of two components of u + B and u - B in Morre...In this article, regularity criteria for the 3D magnetohydrodynamic equations are investigated. Some sufficient integrability conditions on two components or the gradient of two components of u + B and u - B in Morrey-Campanato spaces are obtained.展开更多
The incompressible limit of the non-isentropic magnetohydrodynamic equations with zero thermal coefficient, in a two dimensional bounded domain with the Dirichlet condi- tion for velocity and perfectly conducting boun...The incompressible limit of the non-isentropic magnetohydrodynamic equations with zero thermal coefficient, in a two dimensional bounded domain with the Dirichlet condi- tion for velocity and perfectly conducting boundary condition for magnetic field, is rigorously justified.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
This paper is concerned with a stability problem on perturbations near a physically important steady state solution of the 3D MHD system.We obtain three major results.The first assesses the existence of global solutio...This paper is concerned with a stability problem on perturbations near a physically important steady state solution of the 3D MHD system.We obtain three major results.The first assesses the existence of global solutions with small initial data.Second,we derive the temporal decay estimate of the solution in the L^(2)-norm,where to prove the result,we need to overcome the difficulty caused by the presence of linear terms from perturbation.Finally,the decay rate in L^(2) space for higher order derivatives of the solution is established.展开更多
In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic fiel...In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic field in a bounded domain Ω R^3. Furthermore,we prove that as the viscosity and resistivity coefficients go to zero simultaneously, these weaksolutions converge to the strong one of the ideal nonhomogeneous incompressible magneto-hydrodynamic equations in energy space.展开更多
In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expr...In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expressed by appropriate formulae. Once the required matrices are chosen, solutions to the MHD equations axe directly constructed.展开更多
We investigate the local existence of smooth solutions of a 3D ideal magneto-hydrodynamics (MHD) equations in a bounded domain and give a blow-up criteria to thisequations with respect to vorticists.
In this paper,we study the regularity criterion of weak solutions to the3 D incompressible Hall-magnetohydrodynamics,which is ifu and Bsatisfy the condition∫_0^T‖_(x3)u(t)‖^q_(LP)+‖▽B‖^γ_(Lβ)dt〈∞ wi...In this paper,we study the regularity criterion of weak solutions to the3 D incompressible Hall-magnetohydrodynamics,which is ifu and Bsatisfy the condition∫_0^T‖_(x3)u(t)‖^q_(LP)+‖▽B‖^γ_(Lβ)dt〈∞ with 3/p+2/q≤1,3/β+2/γ≤1,p〉3,β〉3,then the weak solution(u,B) is a smooth one on(0,T].展开更多
We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl...We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.展开更多
In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt ...In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt a technique based on the “zero-energy-contribution” contribution, which separates the magnetic and fluid fields from the coupled system. Additionally, making use of the pressure projection methods, the pressure variable appears explicitly in the velocity field equation, and would be computed in the form of a Poisson equation. Therefore, the total system is divided into several smaller sub-systems that could be simulated at a significantly low cost. We prove the unconditional energy stability, unique solvability and optimal error estimates for the proposed scheme, and present numerical results to verify the accuracy, efficiency and stability of the scheme.展开更多
In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then ob...In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.展开更多
In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in R^N, N≥ 2, under the assumptions that the initialdensity is bounded away from zero. The proof relies on ...In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in R^N, N≥ 2, under the assumptions that the initialdensity is bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.展开更多
This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructe...This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.展开更多
基金supported by the Opening Project of Guangdong Province Key Laboratory of Cyber-Physical System(20168030301008)supported by the National Natural Science Foundation of China(11126266)+4 种基金the Natural Science Foundation of Guangdong Province(2016A030313390)the Quality Engineering Project of Guangdong Province(SCAU-2021-69)the SCAU Fund for High-level University Buildingsupported by the National Key Research and Development Program of China(2020YFA0712500)the National Natural Science Foundation of China(11971496,12126609)。
文摘In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences,grant No.XDB 41000000National Natural Science Foundation of China(NSFC,Grant No.12288102)+4 种基金support of the National Natural Science Foundation of China(NSFC,Grant No.11973082)support of the National Natural Science Foundation of China(NSFC,Grant No.42305136)supported by the National Key R&D Program of China(Grant No.2021YFA1600400/2021YFA1600402)Natural Science Foundation of Yunnan Province(No.202201AT070158)the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)。
文摘Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
基金The research is partially supported by NSF of China (10431060)NSF of Beijing (1042003)key project of NSFB-FBEC
文摘The two-dimensional magneto-hydrodynamic (MHD) equations are considered in this article. Viscous approximations are used to obtain the local existence and uniqueness of the classical solution. When the viscous term vanishes, the convergence rates, a main problem in turbulence, are also discussed. Moreover, a blow-up criterion for our classical solution is established in terms of the magnetic fields.
基金supported in part by the NNSF of China (11101144,11171377)Research Initiation Project for High-level Talents (201031) of North China University of Water Resources and Electric Power
文摘In this article, regularity criteria for the 3D magnetohydrodynamic equations are investigated. Some sufficient integrability conditions on two components or the gradient of two components of u + B and u - B in Morrey-Campanato spaces are obtained.
基金supported by NSFC(11371042)China 973 program(2011 CB808002)+2 种基金BSFC(1132006)CIT&TCD(20130312)the fund of the Beijing Education Committee(KZ 201210005005)
文摘The incompressible limit of the non-isentropic magnetohydrodynamic equations with zero thermal coefficient, in a two dimensional bounded domain with the Dirichlet condi- tion for velocity and perfectly conducting boundary condition for magnetic field, is rigorously justified.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金The second author is supported by the National Natural Science Foundation of China(11471103).
文摘This paper is concerned with a stability problem on perturbations near a physically important steady state solution of the 3D MHD system.We obtain three major results.The first assesses the existence of global solutions with small initial data.Second,we derive the temporal decay estimate of the solution in the L^(2)-norm,where to prove the result,we need to overcome the difficulty caused by the presence of linear terms from perturbation.Finally,the decay rate in L^(2) space for higher order derivatives of the solution is established.
文摘In this paper, we establish the existence of the global weak solutions for the non-homogeneous incompressible magnetohydrodynamic equations with Navier boundary condi-tions for the velocity field and the magnetic field in a bounded domain Ω R^3. Furthermore,we prove that as the viscosity and resistivity coefficients go to zero simultaneously, these weaksolutions converge to the strong one of the ideal nonhomogeneous incompressible magneto-hydrodynamic equations in energy space.
文摘In this paper, a sufficient and necessary condition is presented for existence of a class of exact solutions to N-dimensional incompressible magnetohydrodynamic (MHD) equations. Such solutions can be explicitly expressed by appropriate formulae. Once the required matrices are chosen, solutions to the MHD equations axe directly constructed.
基金supported by NRF-2015R1A5A1009350the National Research Foundation of Korea Grant funded by the Korean Government(NRF-2016R1D1A1B03930422)
文摘We investigate the local existence of smooth solutions of a 3D ideal magneto-hydrodynamics (MHD) equations in a bounded domain and give a blow-up criteria to thisequations with respect to vorticists.
基金Supported by the National Natural Science Foundation of China(l1471103)
文摘In this paper,we study the regularity criterion of weak solutions to the3 D incompressible Hall-magnetohydrodynamics,which is ifu and Bsatisfy the condition∫_0^T‖_(x3)u(t)‖^q_(LP)+‖▽B‖^γ_(Lβ)dt〈∞ with 3/p+2/q≤1,3/β+2/γ≤1,p〉3,β〉3,then the weak solution(u,B) is a smooth one on(0,T].
基金supported partially by NSFC(11671193,11971234)supported partially by the China Postdoctoral Science Foundation(2019M650581).
文摘We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
文摘In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt a technique based on the “zero-energy-contribution” contribution, which separates the magnetic and fluid fields from the coupled system. Additionally, making use of the pressure projection methods, the pressure variable appears explicitly in the velocity field equation, and would be computed in the form of a Poisson equation. Therefore, the total system is divided into several smaller sub-systems that could be simulated at a significantly low cost. We prove the unconditional energy stability, unique solvability and optimal error estimates for the proposed scheme, and present numerical results to verify the accuracy, efficiency and stability of the scheme.
基金Supported by NSFC (10976026)supported by the Fundamental Research Funds for the Central Universities (11QZR18)the Research Funds for high-level talents of Huaqiao University (12BS232)
文摘In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.
文摘In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in R^N, N≥ 2, under the assumptions that the initialdensity is bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia
文摘This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.