大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)...大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)算法,通过定义的流形距离,能够选择位于流形上的数据点的同类近邻点、异类近邻点以及全局近邻点,并依据流形距离定义数据点与其各近邻点之间的相似度,利用这种相似度度量构造算法的目标函数.通过在ORL,YALE人脸数据库上的实验表明,与现有算法相比,数据集通过该算法降维后,能够使基于距离的识别算法具有更高的分类精确度.同时,为了解决非线性降维问题,提出了Kernel SSDA,同样通过实验验证了算法的有效性.展开更多
对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征...对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UC I中C red it-A、C red it-G、Iris和Veh ic le四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。展开更多
文摘大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)算法,通过定义的流形距离,能够选择位于流形上的数据点的同类近邻点、异类近邻点以及全局近邻点,并依据流形距离定义数据点与其各近邻点之间的相似度,利用这种相似度度量构造算法的目标函数.通过在ORL,YALE人脸数据库上的实验表明,与现有算法相比,数据集通过该算法降维后,能够使基于距离的识别算法具有更高的分类精确度.同时,为了解决非线性降维问题,提出了Kernel SSDA,同样通过实验验证了算法的有效性.
文摘对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UC I中C red it-A、C red it-G、Iris和Veh ic le四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。