The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of th...Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are clarified,and a shale oil enrichment model is established.The results show that the enrichment of shale oil in the Fengcheng Formation in the Mahu Sag is controlled by the organic abundance,organic type,reservoir capacity and the amount of migration hydrocarbon in shale.The abundance of organic matter provides the material basis for shale oil enrichment,and the shales containing typesⅠandⅡorganic matters have good oil content.The reservoir capacity controls shale oil enrichment.Macropores are the main space for shale oil enrichment in the Fengcheng Formation,and pore size and fracture scale directly control the degree of shale oil enrichment.The migration of hydrocarbons in shale affects shale oil enrichment.The shale that has expelled hydrocarbons has poor oil content,while the shale that has received hydrocarbons migrated from other strata has good oil content.Lithofacies reflect the hydrocarbon generation and storage capacity comprehensively.The laminated felsic shale,laminated lime-dolomitic shale and thick-layered felsic shale have good oil content,and they are favorable lithofacies for shale oil enrichment.Under the control of these factors,relative migration of hydrocarbons occurred within the Fengcheng shale,which leads to the the difference in the enrichment process of shale oil.Accordingly,the enrichment mode of shale oil in Fengcheng Formation is established as"in-situ enrichment"and"migration enrichment".By superimposing favorable lithofacies and main controlling factors of enrichment,the sweet spot of shale oil in the Fengcheng Formation can be selected which has great significance for the exploration and development of shale oil.展开更多
Based on the geological and geochemical analysis of potential source rocks in different formations and the classification of crude oil types,combined with the hydrocarbon generation thermal simulation experiments,the ...Based on the geological and geochemical analysis of potential source rocks in different formations and the classification of crude oil types,combined with the hydrocarbon generation thermal simulation experiments,the source,genesis,and distribution of different types of oils in the Mahu large oil province of the Junggar Basin are investigated.Four sets of potential source rocks are developed in the Mahu Sag.Specifically,the source rocks of the Permian Fengcheng Formation have the highest hydrocarbon generation potential and contain mainly TypesⅡandⅠorganic matters,with a high oil generation capacity.In contrast,the source rocks in other formations exhibit lower hydrocarbon generation potential and contain mainly TypeⅢorganic matter,with dominant gas generation.Oils in the Mahu Sag can be classified as three types:A,B and C,which display ascending,mountainous and descending C_(20)-C_(21)-C_(23)tricyclic terpenes abundance patterns in sequence,and gradually increasing relative content of tricyclic terpenes and sterane isomerization parameters,indicating an increasing oil maturity.Different types of oils are distributed spatially in an obviously orderly manner:Type A oil is close to the edge of the sag,Type C oil is concentrated in the center of the sag,and Type B oil lies in the slope area between Type A and Type C.The results of oil-source correlation and thermal simulation experiments show that the three types of oils come from the source rocks of the Fengcheng Formation at different thermal evolution stages.This new understanding of the differential genesis of oils in the Mahu Sag reasonably explains the source,distribution,and genetic mechanism of the three types of oils.The study results are of important guidance for the comprehensive and three-dimensional oil exploration,the identification of oil distribution in the total petroleum system,and the prediction of favorable exploration areas in the Mahu Sag.展开更多
The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tigh...The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tight reservoirs and the mechanisms that generate them are of significance in identifying the distribution of high-quality reservoirs and in improving the prediction accuracy of sweet spots in tight oil reservoirs. In this paper, high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR) experiments were carried out on samples from the tight reservoirs in the study area. These experimental results were combined with cluster analysis, fractal theory, and microscopic observations to qualitatively and quantitatively evaluate pore types, sizes, and structures. A classification scheme was established that divides the reservoir into four types, based on the microstructure characteristics of samples, and the genetic mechanisms that aided the development of reservoir microstructure were analyzed. The results show that the lower limit for the tight reservoir in the Fengcheng Formation is Φ of 3.5% and K of 0.03 mD. The pore throat size and distribution span gradually decrease from Type I, through Type II and Type III reservoirs to non-reservoirs, and the pore type also evolves from dominantly intergranular pores to intercrystalline pores. The structural trend shows a decrease in the ball-stick pore-throat system and an increase in the branch-like pore-throat system. The dual effects of sedimentation and diagenesis shape the microscopic characteristics of pores and throats. The sorting, roundness, and particle size of the original sediments determine the original physical properties of the reservoir. The diagenetic environment of ‘two alkalinity stages and one acidity stage’ influenced the evolution of pore type and size. Although the cementation of authigenic minerals in the early alkaline environment adversely affected reservoir properties, it also alleviated the damage of the later compaction to some extent. Dissolution in the mid-term acidic environment greatly improved the physical properties of this tight reservoir, making dissolution pores an important reservoir space. The late alkaline environment occurred after large-scale oil and gas accumulation. During this period, the cementation of authigenic minerals had a limited effect on the reservoir space occupied by crude oil. It had a more significant impact on the sand bodies not filled with oil, making them function as barriers.展开更多
Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the ge...Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the geochemical characteristics and origins of the oil in the J_(1)b reservoir. This study analyzes 44 oil and 14 source rock samples from the area in order to reveal their organic geochemical characteristics and the origins of the oils. The J_(1)b oils are characterized by a low Pr/Ph ratio and high β-carotene and gammacerane indices, which indicate that they were mainly generated from source rocks deposited in a hypersaline environment. The oils are also extremely enhanced in C_(29) regular steranes, possibly derived from halophilic algae. Oil-source correlation shows that the oils were derived from the Lower Permian Fengcheng Formation (P_(1)f) source rocks, which were deposited in a strongly stratified and highly saline water column with a predominance of algal/bacterial input in the organic matter. The source rocks of the Middle Permian lower-Wuerhe Formation (P_(2)w), which were deposited in fresh to slightly saline water conditions with a greater input of terrigenous organic matter, make only a minor contribution to the J_(1)b oils. The reconstruction of the oil accumulation process shows that the J_(1)b oil reservoir may have been twice charged during Late Jurassic–Early Cretaceous and the Paleogene–Neogene, respectively. A large amount volume of hydrocarbons generated in the P_(1)f source rock and leaked from T_(1)b oil reservoirs migrated along faults connecting source beds and shallow-buried secondary faults into Jurassic traps, resulting in large-scale accumulations in J_(1)b. These results are crucial for understanding the petroleum system of the Mahu Sag and will provide valuable guidance for petroleum exploration in the shallower formations in the slope area of the sag.展开更多
Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock r...Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas.展开更多
The origin of overpressure and its effect on petroleum accumulation in the large Permian/Triassic conglomerate oil province in the Mahu Sag,Junggar Basin have been investigated based on comprehensive analysis of log c...The origin of overpressure and its effect on petroleum accumulation in the large Permian/Triassic conglomerate oil province in the Mahu Sag,Junggar Basin have been investigated based on comprehensive analysis of log curve combinations,loading-unloading curves,sonic velocity-density cross-plot,and porosity comparison data.The study results show that there are two kinds of normal compaction models in the study area,namely,two-stage linear model and exponent model;overpressure in the large conglomerate reservoirs including Lower Triassic Baikouquan Formation and Permian Upper and Lower Wu’erhe Formations is the result of pressure transfer,and the source of overpressure is the overpressure caused by hydrocarbon generation of Permian Fengcheng Formation major source rock.The petroleum migrated through faults under the driving of hydrocarbon generation overpressure into the reservoirs to accumulate,forming the Permian and Triassic overpressure oil and gas reservoirs.The occurrence and distribution of overpressure are controlled by the source rock maturity and strike-slip faults connecting the source rock and conglomerate reservoirs formed from Indosinian Movement to Himalayan Movement.As overpressure is the driving force for petroleum migration in the large Mahu oil province,the formation and distribution of petroleum reservoirs above the source rock in this area may have a close relationship with the occurrence of overpressure.展开更多
The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag,Junggar Basin are investigated based on observation of cores and thin sections;analyses of X-ray fluorescence,...The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag,Junggar Basin are investigated based on observation of cores and thin sections;analyses of X-ray fluorescence,in situ major,trace and rare earth elements(REE),carbon,oxygen and strontium isotopes,fluid inclusions,as well as basin modeling.There are three periods of calcite fillings.The Period I calcite is characterized by low Mn content,flat REE pattern,strong negative cerium(Ce)anomaly,weak to moderate negative Eu anomaly,and light carbon isotopic composition,indicating the formation of the calcite was affected by meteoric water.The Period II calcite shows higher Mn and light REE contents,weak positive Ce anomaly and slight positive europium(Eu)anomaly,and a little heavier carbon isotopic composition and slightly lower strontium isotope ratio than the Period I calcite,suggesting that deep diagenetic fluids affected the formation of the Period II calcite to some extent.The Period III calcite is rich in iron and manganese and has REE pattern similar to that of the Period II calcite,but the cerium and europium enomalies vary significantly.The Period I and II calcites were formed in shallow diagenetic environment at approximately 250–260 Ma,corresponding to Late Hercynian orogeny at Late Permian.The PeriodⅢcalcite was probably formed in the Indo-China movement during Late Triassic.It is believed that the precipitation of calcite in basalt fractures near unconformity was related to leaching and dissolution of carbonates in the overlying Lower Permian Fengcheng Formation by meteoric water,which destructed the Carboniferous weathering crust reservoirs in early stage.Relatively high quality reservoirs could be developed in positions with weak filling and strong late dissolution,such as structural high parts with Fengcheng Formation missing,distant strata from Fengcheng Formation vertically,buried hills inside lake basin,etc.展开更多
Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, log...Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, logging response and lithofacies identification. Six lithofacies are developed in the Fengcheng Formation. The Feng 2 Member(P1 f2) is dominated by lithofacies with alkaline minerals, while the upper part of the Feng 1 Member(P1 f1) and the lower part of the Feng 3 Member(P1 f3) are primarily organic-rich mudstones that are interbedded with dolomite and dolomitic rock. Paleoenvironment evolution of Fengcheng Formation can be divided into 5 stages, which was controlled by volcanic activity and paleoclimate. The first stage(the early phase of P1 f1) was characterized by intensive volcanic activity and arid climate, developing pyroclastics and sedimentary volcaniclastic rocks. The secondary stage(the later phase of P1 f1) had weak volcanic activity and humid climate that contributed to the development of organic-rich mudstone, forming primary source rock in the Fengcheng Formation. The increasing arid climate at the third stage(the early phase of P1 f2) resulted in shrinking of lake basin and increasing of salinity, giving rise to dolomite and dolomitic rocks. The continuous aird climate, low lake level and high salinity at the fourth stage(the later phase of P1 f2) generated special alkaline minerals, e.g., trona, indicating the formation of alkaline-lacustrine. The humid climate made lake level rise and desalted lake water, therefore, the fifth stage(P1 f3) dominated by the deposition of terrigenous clastic rocks and dolomitic rocks.展开更多
The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the i...The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.展开更多
Mahu Sag, one of the most oil and gas bearing sags in Junggar basin, is in the northwestern margin of the basin. On gentle slope region of the sag, a serial of large scale coarse fan delta deposits were developed in T...Mahu Sag, one of the most oil and gas bearing sags in Junggar basin, is in the northwestern margin of the basin. On gentle slope region of the sag, a serial of large scale coarse fan delta deposits were developed in Triassic Baikouquan Formation. In order to understand the petrology characters of conglomerates in Baikouquan Formation, based on lots of cores, grain size analysis, normal thin sections, casting thin sections, scanning electron photomicrographs, mineral composition identifications, clay mineral and bulk composition identifications of X-ray diffraction, were comparatively studied for Xiazijie and Huangyangquan fan-delta in Mahu Sag. Mineral composition of conglomerates is main tuff, while eurite, dacite, rhyolite, andesite and granite are common. However, more tuff and granite, less eurite and andesite in Xiazijie fan-delta, there is no rhyolite in Huangyangquan fan-delta. Kaolinization and chloritization of conglomerates are ubiquitous in the formation. The content of chlorite and kaolinite is higher in Xiazijie fan-delta, with lower illite-smectite and illite. There is less feldspar of clastic and more calcite of cement in Xiazijie fan-delta.展开更多
Sandy-conglomerate reservoir has gradually become a major target of oil and gas exploration.Complex diagenetic process and diagenetic fluid play a significant role in affecting reservoir heterogeneity.Carbonate cement...Sandy-conglomerate reservoir has gradually become a major target of oil and gas exploration.Complex diagenetic process and diagenetic fluid play a significant role in affecting reservoir heterogeneity.Carbonate cements form at various stages of the diagenesis process and record various geological fluid information.Recently,one-billion-ton sandy conglomerate oil field was exposed in Triassic Baikouquan Formation,Mahu sag,Junggar Basin.Therefore,an integrated study applying casting thin sections,cathodeluminescence,fluorescence,carbon and oxygen stable isotopes,electronic probe microanalysis and aqueous fluid inclusions measurements was performed in order to identify the types of carbonate mineral and its representative diagenetic environment and discuss the influences of different CO_(2) injections on reservoir quality.The main findings are as follows:The reservoir is mainly composed of 70.33%conglomerate and 16.06%coarse-grained sandstone.They are characterized by low compositional maturity and abundant lithic debris.Four types carbonate cements are identified according to the petrological and geochemical characteristics,including two types of Mn-rich calcite,ferroan calcite,siderite and dawsonite.They display an unusual broad spectrum ofδ^(13)C values(-54.99‰to+8.8‰),suggesting both organic and inorganic CO_(2) injections.The δ^(13)C values of siderite are close to 0,and its formation is related to meteoric water.Theδ^(13)C values of ferroan calcite and the occurrence of dawsonite indicate the trace of inorganic mantle-derived magmatic fluids.Theδ^(13)C values and trace elements of Mn-rich calcite record the information of hydrocarbon-bearing fluids.The fluid inclusions measurement data and reservoir properties and oil-test data show that the oil content of reservoir is not only affected by the formation time of different cements,but also by the relative content of dissolution and cementation.For these reservoirs altered by carbonate cements,it does not cause poor oil-bearing due to blockage of secondary minerals.展开更多
To address the fast productivity decline of the horizontal wells and low oil recovery during natural depletion in Baikouquan formation,the approach of solution gas re-injection was proposed with the primary objective ...To address the fast productivity decline of the horizontal wells and low oil recovery during natural depletion in Baikouquan formation,the approach of solution gas re-injection was proposed with the primary objective of further developing this formation.Herein,a field-scale numerical compositional reservoir model was built up based on the formation properties and then the effects of permeability,fractures and formation stress on the production dynamics were thoroughly investigated.A sensitivity analysis,which can correlate the oil recovery with these parameters,was also performed.The results showed that the re-injection of solution gas could remarkably retard the production depletion of the horizontal wells thereby improving the oil production.The oil recovery rate increased with permeability,fracture half-length,fracture conductivity,and formation dip.With regard to the fracture distribution,it was found that the interlaced fracture outperformed the aligned fracture for the solution gas re-injection.The influence of the formation stress should be carefully considered in the production process.Sensitivity analysis indicated that the formation dip was the paramount parameter,and the permeability,fracture half-length,and fracture conductivity also played central roles.The results of this study supplement earlier observations and provide constructive envision for enhanced oil recovery of tight reservoirs.展开更多
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil...Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.展开更多
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
文摘Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are clarified,and a shale oil enrichment model is established.The results show that the enrichment of shale oil in the Fengcheng Formation in the Mahu Sag is controlled by the organic abundance,organic type,reservoir capacity and the amount of migration hydrocarbon in shale.The abundance of organic matter provides the material basis for shale oil enrichment,and the shales containing typesⅠandⅡorganic matters have good oil content.The reservoir capacity controls shale oil enrichment.Macropores are the main space for shale oil enrichment in the Fengcheng Formation,and pore size and fracture scale directly control the degree of shale oil enrichment.The migration of hydrocarbons in shale affects shale oil enrichment.The shale that has expelled hydrocarbons has poor oil content,while the shale that has received hydrocarbons migrated from other strata has good oil content.Lithofacies reflect the hydrocarbon generation and storage capacity comprehensively.The laminated felsic shale,laminated lime-dolomitic shale and thick-layered felsic shale have good oil content,and they are favorable lithofacies for shale oil enrichment.Under the control of these factors,relative migration of hydrocarbons occurred within the Fengcheng shale,which leads to the the difference in the enrichment process of shale oil.Accordingly,the enrichment mode of shale oil in Fengcheng Formation is established as"in-situ enrichment"and"migration enrichment".By superimposing favorable lithofacies and main controlling factors of enrichment,the sweet spot of shale oil in the Fengcheng Formation can be selected which has great significance for the exploration and development of shale oil.
文摘Based on the geological and geochemical analysis of potential source rocks in different formations and the classification of crude oil types,combined with the hydrocarbon generation thermal simulation experiments,the source,genesis,and distribution of different types of oils in the Mahu large oil province of the Junggar Basin are investigated.Four sets of potential source rocks are developed in the Mahu Sag.Specifically,the source rocks of the Permian Fengcheng Formation have the highest hydrocarbon generation potential and contain mainly TypesⅡandⅠorganic matters,with a high oil generation capacity.In contrast,the source rocks in other formations exhibit lower hydrocarbon generation potential and contain mainly TypeⅢorganic matter,with dominant gas generation.Oils in the Mahu Sag can be classified as three types:A,B and C,which display ascending,mountainous and descending C_(20)-C_(21)-C_(23)tricyclic terpenes abundance patterns in sequence,and gradually increasing relative content of tricyclic terpenes and sterane isomerization parameters,indicating an increasing oil maturity.Different types of oils are distributed spatially in an obviously orderly manner:Type A oil is close to the edge of the sag,Type C oil is concentrated in the center of the sag,and Type B oil lies in the slope area between Type A and Type C.The results of oil-source correlation and thermal simulation experiments show that the three types of oils come from the source rocks of the Fengcheng Formation at different thermal evolution stages.This new understanding of the differential genesis of oils in the Mahu Sag reasonably explains the source,distribution,and genetic mechanism of the three types of oils.The study results are of important guidance for the comprehensive and three-dimensional oil exploration,the identification of oil distribution in the total petroleum system,and the prediction of favorable exploration areas in the Mahu Sag.
基金supported by a Major Projects grant of the China National Petroleum Corporation(Project No.2021DJ1003).
文摘The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tight reservoirs and the mechanisms that generate them are of significance in identifying the distribution of high-quality reservoirs and in improving the prediction accuracy of sweet spots in tight oil reservoirs. In this paper, high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR) experiments were carried out on samples from the tight reservoirs in the study area. These experimental results were combined with cluster analysis, fractal theory, and microscopic observations to qualitatively and quantitatively evaluate pore types, sizes, and structures. A classification scheme was established that divides the reservoir into four types, based on the microstructure characteristics of samples, and the genetic mechanisms that aided the development of reservoir microstructure were analyzed. The results show that the lower limit for the tight reservoir in the Fengcheng Formation is Φ of 3.5% and K of 0.03 mD. The pore throat size and distribution span gradually decrease from Type I, through Type II and Type III reservoirs to non-reservoirs, and the pore type also evolves from dominantly intergranular pores to intercrystalline pores. The structural trend shows a decrease in the ball-stick pore-throat system and an increase in the branch-like pore-throat system. The dual effects of sedimentation and diagenesis shape the microscopic characteristics of pores and throats. The sorting, roundness, and particle size of the original sediments determine the original physical properties of the reservoir. The diagenetic environment of ‘two alkalinity stages and one acidity stage’ influenced the evolution of pore type and size. Although the cementation of authigenic minerals in the early alkaline environment adversely affected reservoir properties, it also alleviated the damage of the later compaction to some extent. Dissolution in the mid-term acidic environment greatly improved the physical properties of this tight reservoir, making dissolution pores an important reservoir space. The late alkaline environment occurred after large-scale oil and gas accumulation. During this period, the cementation of authigenic minerals had a limited effect on the reservoir space occupied by crude oil. It had a more significant impact on the sand bodies not filled with oil, making them function as barriers.
基金supported by the National Natural Science Foundation of China(No.41802179)Sichuan Science and Technology Program(No.2019YFH0037)the Foundation of the State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1906).
文摘Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the geochemical characteristics and origins of the oil in the J_(1)b reservoir. This study analyzes 44 oil and 14 source rock samples from the area in order to reveal their organic geochemical characteristics and the origins of the oils. The J_(1)b oils are characterized by a low Pr/Ph ratio and high β-carotene and gammacerane indices, which indicate that they were mainly generated from source rocks deposited in a hypersaline environment. The oils are also extremely enhanced in C_(29) regular steranes, possibly derived from halophilic algae. Oil-source correlation shows that the oils were derived from the Lower Permian Fengcheng Formation (P_(1)f) source rocks, which were deposited in a strongly stratified and highly saline water column with a predominance of algal/bacterial input in the organic matter. The source rocks of the Middle Permian lower-Wuerhe Formation (P_(2)w), which were deposited in fresh to slightly saline water conditions with a greater input of terrigenous organic matter, make only a minor contribution to the J_(1)b oils. The reconstruction of the oil accumulation process shows that the J_(1)b oil reservoir may have been twice charged during Late Jurassic–Early Cretaceous and the Paleogene–Neogene, respectively. A large amount volume of hydrocarbons generated in the P_(1)f source rock and leaked from T_(1)b oil reservoirs migrated along faults connecting source beds and shallow-buried secondary faults into Jurassic traps, resulting in large-scale accumulations in J_(1)b. These results are crucial for understanding the petroleum system of the Mahu Sag and will provide valuable guidance for petroleum exploration in the shallower formations in the slope area of the sag.
基金Supported the Major National Oil and Gas Projects of China(2016ZX05046-006).
文摘Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas.
基金Supported by the National Natural Science Foundation of China(41502132)the China National Science and Technology Major Project(2017ZX05001-004)
文摘The origin of overpressure and its effect on petroleum accumulation in the large Permian/Triassic conglomerate oil province in the Mahu Sag,Junggar Basin have been investigated based on comprehensive analysis of log curve combinations,loading-unloading curves,sonic velocity-density cross-plot,and porosity comparison data.The study results show that there are two kinds of normal compaction models in the study area,namely,two-stage linear model and exponent model;overpressure in the large conglomerate reservoirs including Lower Triassic Baikouquan Formation and Permian Upper and Lower Wu’erhe Formations is the result of pressure transfer,and the source of overpressure is the overpressure caused by hydrocarbon generation of Permian Fengcheng Formation major source rock.The petroleum migrated through faults under the driving of hydrocarbon generation overpressure into the reservoirs to accumulate,forming the Permian and Triassic overpressure oil and gas reservoirs.The occurrence and distribution of overpressure are controlled by the source rock maturity and strike-slip faults connecting the source rock and conglomerate reservoirs formed from Indosinian Movement to Himalayan Movement.As overpressure is the driving force for petroleum migration in the large Mahu oil province,the formation and distribution of petroleum reservoirs above the source rock in this area may have a close relationship with the occurrence of overpressure.
基金Supported by the NSFC Innovative Research Group on Oil and Gas Accumulation Mechanism(41821002)Major Science and Technology Project of PetroChina(2017E-0401)China Postdoctoral Science Foundation(2019M662465)。
文摘The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag,Junggar Basin are investigated based on observation of cores and thin sections;analyses of X-ray fluorescence,in situ major,trace and rare earth elements(REE),carbon,oxygen and strontium isotopes,fluid inclusions,as well as basin modeling.There are three periods of calcite fillings.The Period I calcite is characterized by low Mn content,flat REE pattern,strong negative cerium(Ce)anomaly,weak to moderate negative Eu anomaly,and light carbon isotopic composition,indicating the formation of the calcite was affected by meteoric water.The Period II calcite shows higher Mn and light REE contents,weak positive Ce anomaly and slight positive europium(Eu)anomaly,and a little heavier carbon isotopic composition and slightly lower strontium isotope ratio than the Period I calcite,suggesting that deep diagenetic fluids affected the formation of the Period II calcite to some extent.The Period III calcite is rich in iron and manganese and has REE pattern similar to that of the Period II calcite,but the cerium and europium enomalies vary significantly.The Period I and II calcites were formed in shallow diagenetic environment at approximately 250–260 Ma,corresponding to Late Hercynian orogeny at Late Permian.The PeriodⅢcalcite was probably formed in the Indo-China movement during Late Triassic.It is believed that the precipitation of calcite in basalt fractures near unconformity was related to leaching and dissolution of carbonates in the overlying Lower Permian Fengcheng Formation by meteoric water,which destructed the Carboniferous weathering crust reservoirs in early stage.Relatively high quality reservoirs could be developed in positions with weak filling and strong late dissolution,such as structural high parts with Fengcheng Formation missing,distant strata from Fengcheng Formation vertically,buried hills inside lake basin,etc.
基金Supported by the China National Science and Technology Major Project(2017ZX05001)the PetroChina Science and Technology Major Project(2016B-0302)
文摘Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, logging response and lithofacies identification. Six lithofacies are developed in the Fengcheng Formation. The Feng 2 Member(P1 f2) is dominated by lithofacies with alkaline minerals, while the upper part of the Feng 1 Member(P1 f1) and the lower part of the Feng 3 Member(P1 f3) are primarily organic-rich mudstones that are interbedded with dolomite and dolomitic rock. Paleoenvironment evolution of Fengcheng Formation can be divided into 5 stages, which was controlled by volcanic activity and paleoclimate. The first stage(the early phase of P1 f1) was characterized by intensive volcanic activity and arid climate, developing pyroclastics and sedimentary volcaniclastic rocks. The secondary stage(the later phase of P1 f1) had weak volcanic activity and humid climate that contributed to the development of organic-rich mudstone, forming primary source rock in the Fengcheng Formation. The increasing arid climate at the third stage(the early phase of P1 f2) resulted in shrinking of lake basin and increasing of salinity, giving rise to dolomite and dolomitic rocks. The continuous aird climate, low lake level and high salinity at the fourth stage(the later phase of P1 f2) generated special alkaline minerals, e.g., trona, indicating the formation of alkaline-lacustrine. The humid climate made lake level rise and desalted lake water, therefore, the fifth stage(P1 f3) dominated by the deposition of terrigenous clastic rocks and dolomitic rocks.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-001,2011ZX05003-003)
文摘The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.
文摘Mahu Sag, one of the most oil and gas bearing sags in Junggar basin, is in the northwestern margin of the basin. On gentle slope region of the sag, a serial of large scale coarse fan delta deposits were developed in Triassic Baikouquan Formation. In order to understand the petrology characters of conglomerates in Baikouquan Formation, based on lots of cores, grain size analysis, normal thin sections, casting thin sections, scanning electron photomicrographs, mineral composition identifications, clay mineral and bulk composition identifications of X-ray diffraction, were comparatively studied for Xiazijie and Huangyangquan fan-delta in Mahu Sag. Mineral composition of conglomerates is main tuff, while eurite, dacite, rhyolite, andesite and granite are common. However, more tuff and granite, less eurite and andesite in Xiazijie fan-delta, there is no rhyolite in Huangyangquan fan-delta. Kaolinization and chloritization of conglomerates are ubiquitous in the formation. The content of chlorite and kaolinite is higher in Xiazijie fan-delta, with lower illite-smectite and illite. There is less feldspar of clastic and more calcite of cement in Xiazijie fan-delta.
基金supported by the National Natural Science Foundation of China(Nos.U1762217,41702141)the Science and Technology Project of China National Petroleum Corporation(No.2016B-03).
文摘Sandy-conglomerate reservoir has gradually become a major target of oil and gas exploration.Complex diagenetic process and diagenetic fluid play a significant role in affecting reservoir heterogeneity.Carbonate cements form at various stages of the diagenesis process and record various geological fluid information.Recently,one-billion-ton sandy conglomerate oil field was exposed in Triassic Baikouquan Formation,Mahu sag,Junggar Basin.Therefore,an integrated study applying casting thin sections,cathodeluminescence,fluorescence,carbon and oxygen stable isotopes,electronic probe microanalysis and aqueous fluid inclusions measurements was performed in order to identify the types of carbonate mineral and its representative diagenetic environment and discuss the influences of different CO_(2) injections on reservoir quality.The main findings are as follows:The reservoir is mainly composed of 70.33%conglomerate and 16.06%coarse-grained sandstone.They are characterized by low compositional maturity and abundant lithic debris.Four types carbonate cements are identified according to the petrological and geochemical characteristics,including two types of Mn-rich calcite,ferroan calcite,siderite and dawsonite.They display an unusual broad spectrum ofδ^(13)C values(-54.99‰to+8.8‰),suggesting both organic and inorganic CO_(2) injections.The δ^(13)C values of siderite are close to 0,and its formation is related to meteoric water.Theδ^(13)C values of ferroan calcite and the occurrence of dawsonite indicate the trace of inorganic mantle-derived magmatic fluids.Theδ^(13)C values and trace elements of Mn-rich calcite record the information of hydrocarbon-bearing fluids.The fluid inclusions measurement data and reservoir properties and oil-test data show that the oil content of reservoir is not only affected by the formation time of different cements,but also by the relative content of dissolution and cementation.For these reservoirs altered by carbonate cements,it does not cause poor oil-bearing due to blockage of secondary minerals.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China(51974265 and 51804264)Science Foundation Shanxi Province,China(201701D121129)+1 种基金Science Foundation of Shanxi Institute of Energy(ZY-2017001)Youth Science and Technology Innovation Team of SWPU(2017CXTD04).The authors also thank the Computer Modeling Group Ltd.for providing the CMG software for this study.The authors would like to thank the anonymous reviewers for valuable comments and suggestions.
文摘To address the fast productivity decline of the horizontal wells and low oil recovery during natural depletion in Baikouquan formation,the approach of solution gas re-injection was proposed with the primary objective of further developing this formation.Herein,a field-scale numerical compositional reservoir model was built up based on the formation properties and then the effects of permeability,fractures and formation stress on the production dynamics were thoroughly investigated.A sensitivity analysis,which can correlate the oil recovery with these parameters,was also performed.The results showed that the re-injection of solution gas could remarkably retard the production depletion of the horizontal wells thereby improving the oil production.The oil recovery rate increased with permeability,fracture half-length,fracture conductivity,and formation dip.With regard to the fracture distribution,it was found that the interlaced fracture outperformed the aligned fracture for the solution gas re-injection.The influence of the formation stress should be carefully considered in the production process.Sensitivity analysis indicated that the formation dip was the paramount parameter,and the permeability,fracture half-length,and fracture conductivity also played central roles.The results of this study supplement earlier observations and provide constructive envision for enhanced oil recovery of tight reservoirs.
基金Supported by the National Natural Science Foundation(42202133,42072174,42130803,41872148)PetroChina Science and Technology Innovation Fund(2023DQ02-0106)PetroChina Basic Technology Project(2021DJ0101).
文摘Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.