Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
The mechanic properties, lasting strength and microstructural properties of straight and elbow pipesof 12CrMo, 10CrMo910 and 12CrlMoV low alloy steel main steam piping system after long-time service weretested and stu...The mechanic properties, lasting strength and microstructural properties of straight and elbow pipesof 12CrMo, 10CrMo910 and 12CrlMoV low alloy steel main steam piping system after long-time service weretested and studied. The testing results showed that, for straight and elbow pipes of mainsteam piping under theconditions of high temperature and high pressure, the numerical operating performance indexes of their metalchanged with little difference, generally both within 5%, and the Values of elbow were higher than those ofstraight pipes. These phenomena proved that the aging processes of pipe metal at different positions are thesame. And the cause for higher numerical performance indexes of elbow and higher failure rate at elbow posi-tion during operation of steam pipes were investigated.展开更多
Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature ...Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.展开更多
Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinet...Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinetic model,and two-fluid model is replaced by drift flux model.A coupled three-dimensional physics and thermal-hydrodynamics model is used to develop its corresponding computing code,thus simulating natural circulation of single-phase flow for the PWR.In this paper,we report the forward and reverse flow distribution in the inverted U-tubes of the steam generator(SG) under some typical operating conditions in the natural circulation case, and analyze the influence of main coolant pump resistance on the forward and reverse flow distribution.The calculation results show that,the pressure drop between SG inlet and outlet plenum decreases,and the SG inlet and outlet mass flow decrease with an increased main coolant pump resistance,but net mass flux of reverse flow in inverted U-tubes,and the ratio of mass flow in all reverse flow tubes to that of main coolant pipeline increase, meanwhile,the secondary steam load is invariable in this process.展开更多
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
文摘The mechanic properties, lasting strength and microstructural properties of straight and elbow pipesof 12CrMo, 10CrMo910 and 12CrlMoV low alloy steel main steam piping system after long-time service weretested and studied. The testing results showed that, for straight and elbow pipes of mainsteam piping under theconditions of high temperature and high pressure, the numerical operating performance indexes of their metalchanged with little difference, generally both within 5%, and the Values of elbow were higher than those ofstraight pipes. These phenomena proved that the aging processes of pipe metal at different positions are thesame. And the cause for higher numerical performance indexes of elbow and higher failure rate at elbow posi-tion during operation of steam pipes were investigated.
基金National Natural Science Foundation of China(No.60974119)
文摘Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.
文摘Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinetic model,and two-fluid model is replaced by drift flux model.A coupled three-dimensional physics and thermal-hydrodynamics model is used to develop its corresponding computing code,thus simulating natural circulation of single-phase flow for the PWR.In this paper,we report the forward and reverse flow distribution in the inverted U-tubes of the steam generator(SG) under some typical operating conditions in the natural circulation case, and analyze the influence of main coolant pump resistance on the forward and reverse flow distribution.The calculation results show that,the pressure drop between SG inlet and outlet plenum decreases,and the SG inlet and outlet mass flow decrease with an increased main coolant pump resistance,but net mass flux of reverse flow in inverted U-tubes,and the ratio of mass flow in all reverse flow tubes to that of main coolant pipeline increase, meanwhile,the secondary steam load is invariable in this process.