The design and implementation of a Generalized Predictive Control(GPC)strategy for the superheated steam temperature regulation in a supercritical(SC)coal-fired power plant is presented.A Controlled Auto-Regressive Mo...The design and implementation of a Generalized Predictive Control(GPC)strategy for the superheated steam temperature regulation in a supercritical(SC)coal-fired power plant is presented.A Controlled Auto-Regressive MovingAverage(CARMA)model of the plant is derived from using the experimental data to approximately predict the plant’s future behavior.This model is required by the GPC algorithm to calculate the future control inputs.A new GPC controller is designed and its performance is tested through extensive simulation studies.Compared with the performance of the plant using a conventional PID controller,the steam temperature controlled by the GPC controller is found to be more stable.The stable steam temperature leads to more efficient plant operation and energy saving,as demonstrated by the simulation results.Plant performance improvement is also tested while the plant experiences the load demand changes and disturbances resulting from the malfunctioning of coal mills.展开更多
基金supported by the EPSRC Grant(EP/G062889/2),Advantage West Midlands and the European Regional Development Agency(Birmingham Science City Energy Efficiency&Demand Reduction project).
文摘The design and implementation of a Generalized Predictive Control(GPC)strategy for the superheated steam temperature regulation in a supercritical(SC)coal-fired power plant is presented.A Controlled Auto-Regressive MovingAverage(CARMA)model of the plant is derived from using the experimental data to approximately predict the plant’s future behavior.This model is required by the GPC algorithm to calculate the future control inputs.A new GPC controller is designed and its performance is tested through extensive simulation studies.Compared with the performance of the plant using a conventional PID controller,the steam temperature controlled by the GPC controller is found to be more stable.The stable steam temperature leads to more efficient plant operation and energy saving,as demonstrated by the simulation results.Plant performance improvement is also tested while the plant experiences the load demand changes and disturbances resulting from the malfunctioning of coal mills.