[ Objective] This study aimed to investigate the effective prevention and control of maize rough dwarf disease in different areas with varying epidemic inten-sity in Shandong Province. [Method] Control effects of sing...[ Objective] This study aimed to investigate the effective prevention and control of maize rough dwarf disease in different areas with varying epidemic inten-sity in Shandong Province. [Method] Control effects of single application of virus in-hibitors and composite application of virus inhibitors with seed dressing agents and pesticides on maize rough dwarf disease in different areas with varying epidemic intensity were investigated. [Result] The same treatment possessed entirely different effects in severely affected areas and slightly affected areas. To be specific, single application of virus inhibitors in slightly affected areas exhibited good control effects, with a control efficiency of 76.59% and yield increment rate of 158.21%; in severely affected areas, single application of virus inhibitors led to low control efficiency and yield increment rate. The highest control efficiency of composite application of virus inhibitors with seed dressing agents and pesticides in severely affected areas was 71.38%, and experimental plots changed from total crop failure to have certain eco-nomic output. [Conclusion] ln different areas with varying epidemic intensity of maize rough dwarf disease, different application modes should be adopted according to lo-cal conditions, thereby saving cost and improving control efficiency.展开更多
[Objective] The paper was to study the disease grading criterion and assess the yield loss caused by maize rough dwarf disease. [Method] The ear lengths and yields of each healthy and infected plant of 5 cultivars wer...[Objective] The paper was to study the disease grading criterion and assess the yield loss caused by maize rough dwarf disease. [Method] The ear lengths and yields of each healthy and infected plant of 5 cultivars were measured during 2009 and 2010. The severity grading criterion was deduced according to the ear length ratios. [Result]When the ratios were 0.92-1.00, 0.67-0.91, 0.41-0.66, 0.10-0.40 and 0, its corresponding disease grading criterions were 0, 1, 3, 5 and 7, respectively. The severity grading criterion was closely correlated to the yield loss. By analyzing the data of disease indexes and yield loss rates of 27 cultivars with DPS (Data Processing System), the regression equations were established respectively. According to the comparison with each other, the Weibull Model was proved to have the highest fitting degree. Validating with the disease indexes of 27 cultivars in 2010, the equation supported the feasibility of the equation to predict the yield loss caused by maize rough dwarf disease. [Conclusion] The paper provided theoretical basis for further study on maize rough dwarf disease.展开更多
Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according ...Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according to their size. An isolate of SRBSDV,JNi4,was obtained from naturally infected maize plants from Ji'ning,Shandong province,in the 2008 maize season. Segments S7 to S10 of JNi4 share nucleotide identities of 72.6%-73.1%,72.3%-73%,73.9%-74.5% and 77.3%-79%,respectively,with corresponding segments of Rice black-streaked dwarf virus isolates,and identities of 99.7%,99.1%-99.7%,98.9%-99.5%,and 98.6%-99.2% with those of SRBSDV isolates HN and GD. JNi4 forms a separate branch with GD and HN in the phylogenetic trees constructed with genomic sequences of S7 to S10. These results confirm the proposed taxonomic status of SRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4 is an isolate of SRBSDV. Shandong is so far the northernmost region where SRBSDV is found in China.展开更多
基金Supported by National Public Welfare Industry Research Project of China(201003031)Science and Technology Development Program of Shandong Province(2009GG10009015)Agricultural Science and Technology Innovation Program of Jinan City(201302637-1)~~
文摘[ Objective] This study aimed to investigate the effective prevention and control of maize rough dwarf disease in different areas with varying epidemic inten-sity in Shandong Province. [Method] Control effects of single application of virus in-hibitors and composite application of virus inhibitors with seed dressing agents and pesticides on maize rough dwarf disease in different areas with varying epidemic intensity were investigated. [Result] The same treatment possessed entirely different effects in severely affected areas and slightly affected areas. To be specific, single application of virus inhibitors in slightly affected areas exhibited good control effects, with a control efficiency of 76.59% and yield increment rate of 158.21%; in severely affected areas, single application of virus inhibitors led to low control efficiency and yield increment rate. The highest control efficiency of composite application of virus inhibitors with seed dressing agents and pesticides in severely affected areas was 71.38%, and experimental plots changed from total crop failure to have certain eco-nomic output. [Conclusion] ln different areas with varying epidemic intensity of maize rough dwarf disease, different application modes should be adopted according to lo-cal conditions, thereby saving cost and improving control efficiency.
基金Supported by "the Eleventh Five Year" Science and Technology Project of Anhui Province(08010302172)
文摘[Objective] The paper was to study the disease grading criterion and assess the yield loss caused by maize rough dwarf disease. [Method] The ear lengths and yields of each healthy and infected plant of 5 cultivars were measured during 2009 and 2010. The severity grading criterion was deduced according to the ear length ratios. [Result]When the ratios were 0.92-1.00, 0.67-0.91, 0.41-0.66, 0.10-0.40 and 0, its corresponding disease grading criterions were 0, 1, 3, 5 and 7, respectively. The severity grading criterion was closely correlated to the yield loss. By analyzing the data of disease indexes and yield loss rates of 27 cultivars with DPS (Data Processing System), the regression equations were established respectively. According to the comparison with each other, the Weibull Model was proved to have the highest fitting degree. Validating with the disease indexes of 27 cultivars in 2010, the equation supported the feasibility of the equation to predict the yield loss caused by maize rough dwarf disease. [Conclusion] The paper provided theoretical basis for further study on maize rough dwarf disease.
基金National Natural Science Foundation of China (30971895, 31011130031)Special Research Funds for the Doctoral Program of Higher Education (20080434006)+2 种基金Grants from Ministry of Science and Technology (2009ZX08003-014B)Shandong province(2009GG10009021)Modern maize industrial system of Shandong province
文摘Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according to their size. An isolate of SRBSDV,JNi4,was obtained from naturally infected maize plants from Ji'ning,Shandong province,in the 2008 maize season. Segments S7 to S10 of JNi4 share nucleotide identities of 72.6%-73.1%,72.3%-73%,73.9%-74.5% and 77.3%-79%,respectively,with corresponding segments of Rice black-streaked dwarf virus isolates,and identities of 99.7%,99.1%-99.7%,98.9%-99.5%,and 98.6%-99.2% with those of SRBSDV isolates HN and GD. JNi4 forms a separate branch with GD and HN in the phylogenetic trees constructed with genomic sequences of S7 to S10. These results confirm the proposed taxonomic status of SRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4 is an isolate of SRBSDV. Shandong is so far the northernmost region where SRBSDV is found in China.