A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to ...A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to 2002. The local cropping sequence of wheat, wheat-beans, maize, and wheat over the 4-year period was adopted. A micro-plot study using ^15N-lahelled fertilizer was carried out to determine the fate of applied N fertilizer in the first year. When N fertilizer was applied wheat (years 1, 2 and 4) and maize (year 3) grain yield increased significantly (P 〈 0.05) (〉 30%), with no significant yield differences in normal rainfall years (Years 1, 2 and 3) for N application at the commonly application rate and at 2/3 of this rate. Grain yield of wheat varied greatly between years, mainly due to variation in annual rainfall. Results of ^15N studies on wheat showed that plants recovered 36.6%-38.4% of the N applied, the N remained in soll (0-40 cm) ranged from 29.2% to 33.6%, and unaccounted-for N was 29.5%-34.2%. The following crop (wheat) recovered 2.1%- 2.8% of the residual N from N applied to the previous wheat crop with recovery generally decreasing in the subsequent three crops (beans, maize and wheat).展开更多
Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants.Most soils have a low available P content,which has become a key limiting factor for increasin...Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants.Most soils have a low available P content,which has become a key limiting factor for increasing crop production.Also,low P use efficiency(PUE)of crops in conjunction with excessive application of P fertilizers has resulted in serious environmental problems.Thus,dissecting the genetic architecture of crop PUE,mining related quantitative trait loci(QTL)and using molecular breeding methods to improve high PUE germplasm are of great significance and serve as an efficient approach for the development of sustainable agriculture.In this review,molecular and phenotypic characteristics of maize inbred lines with high PUE,related QTL and genes as well as low-P responses are summarized.Based on this,a breeding strategy applying genomic selection as the core,and integrating the existing genetic information and molecular breeding techniques is proposed for breeding high PUE maize inbred lines and hybrids.展开更多
基金Project supported by the International Atom Energy Agency (IAEA) (NO. 302-D1-CRP-9986) and the National Basic Research Program of China (NO. 2005CB121102).
文摘A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to 2002. The local cropping sequence of wheat, wheat-beans, maize, and wheat over the 4-year period was adopted. A micro-plot study using ^15N-lahelled fertilizer was carried out to determine the fate of applied N fertilizer in the first year. When N fertilizer was applied wheat (years 1, 2 and 4) and maize (year 3) grain yield increased significantly (P 〈 0.05) (〉 30%), with no significant yield differences in normal rainfall years (Years 1, 2 and 3) for N application at the commonly application rate and at 2/3 of this rate. Grain yield of wheat varied greatly between years, mainly due to variation in annual rainfall. Results of ^15N studies on wheat showed that plants recovered 36.6%-38.4% of the N applied, the N remained in soll (0-40 cm) ranged from 29.2% to 33.6%, and unaccounted-for N was 29.5%-34.2%. The following crop (wheat) recovered 2.1%- 2.8% of the residual N from N applied to the previous wheat crop with recovery generally decreasing in the subsequent three crops (beans, maize and wheat).
基金supported by the National Key Research and Development Program of China (2018YFD0100201 and 2016YFD0101201)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of Chinathe Sino-German International Research Training Group “Adaptation of maize-based food-feed-energy systems to limited phosphate resources.”
文摘Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants.Most soils have a low available P content,which has become a key limiting factor for increasing crop production.Also,low P use efficiency(PUE)of crops in conjunction with excessive application of P fertilizers has resulted in serious environmental problems.Thus,dissecting the genetic architecture of crop PUE,mining related quantitative trait loci(QTL)and using molecular breeding methods to improve high PUE germplasm are of great significance and serve as an efficient approach for the development of sustainable agriculture.In this review,molecular and phenotypic characteristics of maize inbred lines with high PUE,related QTL and genes as well as low-P responses are summarized.Based on this,a breeding strategy applying genomic selection as the core,and integrating the existing genetic information and molecular breeding techniques is proposed for breeding high PUE maize inbred lines and hybrids.