In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana...In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tan β, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.展开更多
In the context of a type I seesaw scenario which leads to get light left-handed and heavy right-handed Majorana neutrinos, we obtain expressions for the transition probability densities between two flavor neutrinos in...In the context of a type I seesaw scenario which leads to get light left-handed and heavy right-handed Majorana neutrinos, we obtain expressions for the transition probability densities between two flavor neutrinos in the cases of left-handed and right-handed neutrinos. We obtain these expressions in the context of an approach developed in the canonical formalism of Quantum Field Theory for neutrinos which are considered as superpositions of mass-eigenstate plane waves with specific momenta. The expressions obtained for the left-handed neutrino case after the ultra-relativistic limit is taking lead to the standard probability densities which describe light neutrino oscillations. For the right-handed neutrino case, the expressions describing heavy neutrino oscillations in the non-relativistic limit are different respect to the ones of the standard neutrino oscillations. However, the right-handed neutrino oscillations are phenomenologically restricted as is shown when the propagation of heavy neutrinos is considered as superpositions of mass-eigenstate wave packets.展开更多
We study the Bc meson rare decay in order to search for the Majorana neutrino signal. It is found that the corresponding decay rate is sensitive to the Majorana neutrino mass and mixing angles. The signal of B~ --~ li...We study the Bc meson rare decay in order to search for the Majorana neutrino signal. It is found that the corresponding decay rate is sensitive to the Majorana neutrino mass and mixing angles. The signal of B~ --~ lil l~ Mm induced by the Majorana neutrino within the mass region mr 〈 mn 〈mB may be observed at LHCb.展开更多
Lepton number violation processes can be induced by the Majorana neutrino exchange, which provide evidence for the Majorana nature of neutrinos. In addition to the natural explanation of the small neutrino masses,Type...Lepton number violation processes can be induced by the Majorana neutrino exchange, which provide evidence for the Majorana nature of neutrinos. In addition to the natural explanation of the small neutrino masses,Type-I seesaw mechanism predicts the existence of Majorana neutrinos. The aim of this work is to study the B meson rare decays B^+→K^((*))+μ^+μ^-in the Standard Model and its extensions, and then to investigate the same-sign decay process B^+→K^((*)-)μ^+μ^+. The corresponding dilepton invariant mass distributions are calculated. It is found that the dilepton angular distributions could shed light on the properties of new interactions induced by Majorana neutrinos.展开更多
The neutrinoless double-beta (0vββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass (m)ee- We put for...The neutrinoless double-beta (0vββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass (m)ee- We put forward a novel 'coupling-rod' diagram to describe (m)ee in the complex plane, by which the effects of the neutrino mass ordering and CP-violating phases on (m)ee are intuitively understood. We show that this geometric language allows us to easily obtain the maximum and minimum of I(m)eel. It remains usable even if there is a kind of new physics contributing to (m)ee, and it can also be extended to describe the effective Majorana masses (m)eμ, (m)eτ, (m)μμ, (m),μτ and (m)ττ which may appear in some other lepton-number violating processes.展开更多
This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), th...This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure: m<sub>τ</sub> > m<sub>μ</sub> > m<sub>e</sub>. Owing to that, there is a belief and it is considered that neutrinos may follow such hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today’s neutrino physics it is only known that neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.展开更多
We study coherent active-sterile neutrino oscillations as a possible source of leptogenesis. To this end, we add 3 gauge invariant Weyl_R neutrinos to the Standard Model with both Dirac and Majorana type mass terms. W...We study coherent active-sterile neutrino oscillations as a possible source of leptogenesis. To this end, we add 3 gauge invariant Weyl_R neutrinos to the Standard Model with both Dirac and Majorana type mass terms. We find that the measured active neutrino masses and mixings, and successful baryogenesis via leptogenesis, may be achieved with fine-tuning, if at least one of the sterile neutrinos has a mass in the approximate range 0.14 to 1.1 GeV.展开更多
A neutrino is a subatomic particle that is very similar to an electron, but has no electrical charge and a very small mass. Neutrinos are one of the most abundant particles in the universe. Because they have very litt...A neutrino is a subatomic particle that is very similar to an electron, but has no electrical charge and a very small mass. Neutrinos are one of the most abundant particles in the universe. Because they have very little interaction with matter, however, they are incredibly difficult to detect. We present a study of the physics of neutrinos using the Dirac lagrangian. Based on Lorentz invariance we introduce the notion of Majorana spinor. Then we derive the mass terms for both Dirac and Majorana neutrinos. We further discuss the general framework of the See-Saw mechanism considering a simplification of the problem.展开更多
To constrain the properties of dark matter, we study spiral galaxy rotation curves measured by the THINGS collaboration. A model that describes a mixture of two self-gravitating non-relativistic ideal gases, “baryons...To constrain the properties of dark matter, we study spiral galaxy rotation curves measured by the THINGS collaboration. A model that describes a mixture of two self-gravitating non-relativistic ideal gases, “baryons” and “dark matter”, reproduces the measured rotation curves within observational uncertainties. The model has four parameters that are obtained by minimizing a x2 between the measured and calculated rotation curves. From these four parameters, we calculate derived galaxy parameters. We find that dark matter satisfies the Boltzmann distribution. The onset of Fermi-Dirac or Bose-Einstein degeneracy obtains disagreement with observations and we determine, with 99% confidence, that the mass of dark matter particles is mh> 16 eV if fermions, or mh> 45 eV if bosons. We measure the root-mean-square velocity of dark matter particles in the spiral galaxies. This observable is of cosmological origin and allows us to obtain the root-mean-square velocity of dark matter particles in the early universe when perturbations were still linear. Extrapolating to the past we obtain the expansion parameter at which dark matter particles become non-relativistic: ahNR=[4.17±0.34(STAT)±2.50(SYST)]×10−6. Knowing we then obtain the dark matter particle mass mh=69.0±4.2(stat)±31.0(syst)eV, and the ratio of dark matter-to-photon temperature Th/T=0.389±0.008(stat)±0.058(syst) after e+e−annihilation while dark matter remains ultra-relativistic. We repeat these measurements with ten galaxies with masses that span three orders of magnitude, and angular momenta that span five orders of magnitude, and obtain fairly consistent results. We conclude that dark matter was once in thermal equilibrium with the (pre?) Standard Model particles (hence the observed Boltzmann distribution) and then decoupled from the Standard Model and from self-annihilation at temperatures above mμ. These results disfavor models with freeze-out or freeze-in. We also measure the primordial amplitude of vector modes, and constrain the baryon-dark matter cross-section: . Finally, we consider sterile Majorana neutrinos as a dark matter candidate.展开更多
In Part II of this study of spiral galaxy rotation curves we apply corrections and estimate all identified systematic uncertainties. We arrive at a detailed, precise, and self-consistent picture of dark matter.
The observation of neutrino oscillations requires new physics beyond the standard model (SM). A SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana neutrinos but ...The observation of neutrino oscillations requires new physics beyond the standard model (SM). A SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana neutrinos but preserving its SU(2)L × U(1)Y gauge symmetry. The overall neutrino mass matrix M turns out to be a symmetric (p+q) × (p+q) matrix. Given p 〉 q, the rank of M is in general equal to 2q, corresponding to 2q non-zero mass eigenvalues. The existence of (p-q) massless left-handed Majorana neutrinos is an exact consequence of the model, independent of the usual approximation made in deriving the Type-I seesaw relation between the effective p x p light Majorana neutrino mass matrix Mv and the q × q heavy Majorana neutrino mass matrix MR. In other words, the numbers of massive left- and right-handed neutrinos are fairly matched. A good example to illustrate this "seesaw fair play rule" is the minimal seesaw model with p = 3 and q = 2, in which one massless neutrino sits on the unbalanced seesaw.展开更多
We emphasize that it is extremely important for future neutrinoless double-beta(0νββ)decay experiments to reach the sensitivity to the effective neutrino mass|mββ|≈1 meV.With such a sensitivity,it is highly poss...We emphasize that it is extremely important for future neutrinoless double-beta(0νββ)decay experiments to reach the sensitivity to the effective neutrino mass|mββ|≈1 meV.With such a sensitivity,it is highly possible to discover the signals of 0νββ decays.If no signal is observed at this sensitivity level,then either neutrinos are Dirac particles or stringent constraints can be placed on their Majorana masses.In this paper,assuming the sensitivity of|mββ|≈1 meV for future 0νββ decay experiments and the precisions on neutrion oscillation parameters after the JUNO experiment,we fully explore the constrained regions of the lightest neutrino mass m1 and two Majorana-type CP-violating phases{ρ,σ}.Several important conclusions in the case of normal neutrino mass ordering can be made.First,the lightest neutrino mass is severely constrained to a narrow range m1∈[0.7,8]meV,which together with the precision measurements of neutrino mass-squared differences from oscillation experiments completely determines the neutrino mass spectrum m2∈[8.6,11.7]meV ing phases is limited to ρ∈[130°,230°],which cannot be obtained from any other realistic experiments.Third,the sum of three neutrino masses is found to beΣ≡m1+m2+m3∈[59.2,72.6]meV,while the effective neutrino mass for beta decays turns out to be mβ≡(|Ue1|2m1^2+|Ue2|2m2^2+|Ue3|2m3^2)1/2∈[8.9,12.6]meV.These observations clearly set up the roadmap for future non-oscillation neutrino experiments aiming to solve the fundamental problems in neutrino physics.展开更多
The lepton number violation (LNV) process can be induced by introducing a fourth generation heavy Majorana neutrino, which is coupled to the charged leptons of the Standard Model (SM). There have been many previou...The lepton number violation (LNV) process can be induced by introducing a fourth generation heavy Majorana neutrino, which is coupled to the charged leptons of the Standard Model (SM). There have been many previous studies on the leptonic number violating decay processes with this mechanism. We follow the trend to study the process: D→Kllπ with the same-sign dilepton final states. We restrict ourselves to certain neutrino mass regions, in which the heavy neutrino could be on-shell and the dominant contribution to the branching fraction comes from the resonance enhanced effect. Applying the narrow width approximation (NWA), we found that the upper limit for the branching fractions for D^0 → K^- 1+1+π- are generally at the order of 10-12 to 10-9, if we take the most stringent upper limit bound currently available in the literature for the mixing matrix elements. We also provide the constraints, which is competitive compared to the LNV B decays, on the mixing matrix element |VeN |^2 based on the upper limit of D^0→K^-e+e+π- estimated from the Monte-Carlo (MC) study at BESⅢ. Although the constraints are worse than the ones from (0vββ) decay in the literature, the future experiment at the charm factory may yield more stringent constraints.展开更多
基金The project supported in part by National Natural Science Foundation of China
文摘In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tan β, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.
文摘In the context of a type I seesaw scenario which leads to get light left-handed and heavy right-handed Majorana neutrinos, we obtain expressions for the transition probability densities between two flavor neutrinos in the cases of left-handed and right-handed neutrinos. We obtain these expressions in the context of an approach developed in the canonical formalism of Quantum Field Theory for neutrinos which are considered as superpositions of mass-eigenstate plane waves with specific momenta. The expressions obtained for the left-handed neutrino case after the ultra-relativistic limit is taking lead to the standard probability densities which describe light neutrino oscillations. For the right-handed neutrino case, the expressions describing heavy neutrino oscillations in the non-relativistic limit are different respect to the ones of the standard neutrino oscillations. However, the right-handed neutrino oscillations are phenomenologically restricted as is shown when the propagation of heavy neutrinos is considered as superpositions of mass-eigenstate wave packets.
基金Supported by the National Science Foundation of China under Grant No.11275114China Postdoctoral Science Foundation under Grant No.2012T50604Natural Science Foundation of Shandong Province under Grant No.ZR2011AQ013
文摘We study the Bc meson rare decay in order to search for the Majorana neutrino signal. It is found that the corresponding decay rate is sensitive to the Majorana neutrino mass and mixing angles. The signal of B~ --~ lil l~ Mm induced by the Majorana neutrino within the mass region mr 〈 mn 〈mB may be observed at LHCb.
基金National Natural Science Foundation of China(11635009,11605075)Natural Science Foundation of Shandong Province(ZR2017JL006)
文摘Lepton number violation processes can be induced by the Majorana neutrino exchange, which provide evidence for the Majorana nature of neutrinos. In addition to the natural explanation of the small neutrino masses,Type-I seesaw mechanism predicts the existence of Majorana neutrinos. The aim of this work is to study the B meson rare decays B^+→K^((*))+μ^+μ^-in the Standard Model and its extensions, and then to investigate the same-sign decay process B^+→K^((*)-)μ^+μ^+. The corresponding dilepton invariant mass distributions are calculated. It is found that the dilepton angular distributions could shed light on the properties of new interactions induced by Majorana neutrinos.
基金Supported by National Natural Science Foundation of China(11135009)
文摘The neutrinoless double-beta (0vββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass (m)ee- We put forward a novel 'coupling-rod' diagram to describe (m)ee in the complex plane, by which the effects of the neutrino mass ordering and CP-violating phases on (m)ee are intuitively understood. We show that this geometric language allows us to easily obtain the maximum and minimum of I(m)eel. It remains usable even if there is a kind of new physics contributing to (m)ee, and it can also be extended to describe the effective Majorana masses (m)eμ, (m)eτ, (m)μμ, (m),μτ and (m)ττ which may appear in some other lepton-number violating processes.
文摘This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure: m<sub>τ</sub> > m<sub>μ</sub> > m<sub>e</sub>. Owing to that, there is a belief and it is considered that neutrinos may follow such hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today’s neutrino physics it is only known that neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.
文摘We study coherent active-sterile neutrino oscillations as a possible source of leptogenesis. To this end, we add 3 gauge invariant Weyl_R neutrinos to the Standard Model with both Dirac and Majorana type mass terms. We find that the measured active neutrino masses and mixings, and successful baryogenesis via leptogenesis, may be achieved with fine-tuning, if at least one of the sterile neutrinos has a mass in the approximate range 0.14 to 1.1 GeV.
文摘A neutrino is a subatomic particle that is very similar to an electron, but has no electrical charge and a very small mass. Neutrinos are one of the most abundant particles in the universe. Because they have very little interaction with matter, however, they are incredibly difficult to detect. We present a study of the physics of neutrinos using the Dirac lagrangian. Based on Lorentz invariance we introduce the notion of Majorana spinor. Then we derive the mass terms for both Dirac and Majorana neutrinos. We further discuss the general framework of the See-Saw mechanism considering a simplification of the problem.
文摘To constrain the properties of dark matter, we study spiral galaxy rotation curves measured by the THINGS collaboration. A model that describes a mixture of two self-gravitating non-relativistic ideal gases, “baryons” and “dark matter”, reproduces the measured rotation curves within observational uncertainties. The model has four parameters that are obtained by minimizing a x2 between the measured and calculated rotation curves. From these four parameters, we calculate derived galaxy parameters. We find that dark matter satisfies the Boltzmann distribution. The onset of Fermi-Dirac or Bose-Einstein degeneracy obtains disagreement with observations and we determine, with 99% confidence, that the mass of dark matter particles is mh> 16 eV if fermions, or mh> 45 eV if bosons. We measure the root-mean-square velocity of dark matter particles in the spiral galaxies. This observable is of cosmological origin and allows us to obtain the root-mean-square velocity of dark matter particles in the early universe when perturbations were still linear. Extrapolating to the past we obtain the expansion parameter at which dark matter particles become non-relativistic: ahNR=[4.17±0.34(STAT)±2.50(SYST)]×10−6. Knowing we then obtain the dark matter particle mass mh=69.0±4.2(stat)±31.0(syst)eV, and the ratio of dark matter-to-photon temperature Th/T=0.389±0.008(stat)±0.058(syst) after e+e−annihilation while dark matter remains ultra-relativistic. We repeat these measurements with ten galaxies with masses that span three orders of magnitude, and angular momenta that span five orders of magnitude, and obtain fairly consistent results. We conclude that dark matter was once in thermal equilibrium with the (pre?) Standard Model particles (hence the observed Boltzmann distribution) and then decoupled from the Standard Model and from self-annihilation at temperatures above mμ. These results disfavor models with freeze-out or freeze-in. We also measure the primordial amplitude of vector modes, and constrain the baryon-dark matter cross-section: . Finally, we consider sterile Majorana neutrinos as a dark matter candidate.
文摘In Part II of this study of spiral galaxy rotation curves we apply corrections and estimate all identified systematic uncertainties. We arrive at a detailed, precise, and self-consistent picture of dark matter.
基金Supported by National Natural Science Foundation of China (10425522)
文摘The observation of neutrino oscillations requires new physics beyond the standard model (SM). A SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana neutrinos but preserving its SU(2)L × U(1)Y gauge symmetry. The overall neutrino mass matrix M turns out to be a symmetric (p+q) × (p+q) matrix. Given p 〉 q, the rank of M is in general equal to 2q, corresponding to 2q non-zero mass eigenvalues. The existence of (p-q) massless left-handed Majorana neutrinos is an exact consequence of the model, independent of the usual approximation made in deriving the Type-I seesaw relation between the effective p x p light Majorana neutrino mass matrix Mv and the q × q heavy Majorana neutrino mass matrix MR. In other words, the numbers of massive left- and right-handed neutrinos are fairly matched. A good example to illustrate this "seesaw fair play rule" is the minimal seesaw model with p = 3 and q = 2, in which one massless neutrino sits on the unbalanced seesaw.
基金supported in part by the National Key R&D Program of China(2018YFA0404100)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA10010100)+1 种基金the National Natural Science Foundation of China(11605081,11775231,11775232,11835013,11820101005)the CAS Center for Excellence in Particle Physics
文摘We emphasize that it is extremely important for future neutrinoless double-beta(0νββ)decay experiments to reach the sensitivity to the effective neutrino mass|mββ|≈1 meV.With such a sensitivity,it is highly possible to discover the signals of 0νββ decays.If no signal is observed at this sensitivity level,then either neutrinos are Dirac particles or stringent constraints can be placed on their Majorana masses.In this paper,assuming the sensitivity of|mββ|≈1 meV for future 0νββ decay experiments and the precisions on neutrion oscillation parameters after the JUNO experiment,we fully explore the constrained regions of the lightest neutrino mass m1 and two Majorana-type CP-violating phases{ρ,σ}.Several important conclusions in the case of normal neutrino mass ordering can be made.First,the lightest neutrino mass is severely constrained to a narrow range m1∈[0.7,8]meV,which together with the precision measurements of neutrino mass-squared differences from oscillation experiments completely determines the neutrino mass spectrum m2∈[8.6,11.7]meV ing phases is limited to ρ∈[130°,230°],which cannot be obtained from any other realistic experiments.Third,the sum of three neutrino masses is found to beΣ≡m1+m2+m3∈[59.2,72.6]meV,while the effective neutrino mass for beta decays turns out to be mβ≡(|Ue1|2m1^2+|Ue2|2m2^2+|Ue3|2m3^2)1/2∈[8.9,12.6]meV.These observations clearly set up the roadmap for future non-oscillation neutrino experiments aiming to solve the fundamental problems in neutrino physics.
基金Supported by National Natural Science Foundation of China(10935012,11125525)Major Program of National Natural Science Foundation of China(2009CB825200)China Postdoctoral Science Foundation
文摘The lepton number violation (LNV) process can be induced by introducing a fourth generation heavy Majorana neutrino, which is coupled to the charged leptons of the Standard Model (SM). There have been many previous studies on the leptonic number violating decay processes with this mechanism. We follow the trend to study the process: D→Kllπ with the same-sign dilepton final states. We restrict ourselves to certain neutrino mass regions, in which the heavy neutrino could be on-shell and the dominant contribution to the branching fraction comes from the resonance enhanced effect. Applying the narrow width approximation (NWA), we found that the upper limit for the branching fractions for D^0 → K^- 1+1+π- are generally at the order of 10-12 to 10-9, if we take the most stringent upper limit bound currently available in the literature for the mixing matrix elements. We also provide the constraints, which is competitive compared to the LNV B decays, on the mixing matrix element |VeN |^2 based on the upper limit of D^0→K^-e+e+π- estimated from the Monte-Carlo (MC) study at BESⅢ. Although the constraints are worse than the ones from (0vββ) decay in the literature, the future experiment at the charm factory may yield more stringent constraints.