1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
The focus of this study is to critically review the physiochemical and engineering properties of the fly ash and its applications in various fields.The utilization of fly ash has become a widespread area,but the amoun...The focus of this study is to critically review the physiochemical and engineering properties of the fly ash and its applications in various fields.The utilization of fly ash has become a widespread area,but the amount of utilization is still a serious issue.It has many beneficial qualities(such as pozzolanic property,fineness,spherical shape,lightweight,etc.),which enhance its properties and make it suitable for its utilization as a new construction material.For the bulk utilization of fly ash,it should be employed in the areas independent of any other parameters.So that,the disposal problem can be reduced significantly.The knowledge of its physiochemical characteristic helps in the judgment of appropriate fly ash for any particular type of work.Fly ash can be utilized in other areas such as asphalt concrete,geopolymer concrete,ground improvement,agricultural sector,roller compacted concrete,brick,etc.that will reduce the existing ashes,and also the disposal problem can be solved appreciably.The implementation of fly ash must be avoided below the natural ground water level and below 4°C temperature conditions.展开更多
Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineerin...Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineering(Bio Ch E)may be recognized as a significant branch of chemical engineering. It may consist of, but not limited to, the following three aspects: 1) Chemical engineering principles and unit operations in biological systems; 2) Process engineering principles for producing existing or developing new chemical products through living ‘devices';and 3) Chemical engineering processes and equipment that are designed and constructed through mimicking(does not have to reproduce one hundred percent) the biological systems including their physical–chemical and mechanical structures to deliver uniquely beneficial performances. This may also include the bio-inspired sensors for process monitoring. In this paper, the above aspects are defined and discussed which establishes the scope of BioChE.展开更多
In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermark...In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.展开更多
Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from we...Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from wet-chemistry methods but suffer from small size,low quality,and multi-facets,which is a major challenge hindering their facet-dependent property studies and applications.Here,we report the facet-engineered growth(FEG)of non-layered 2D manganese chalcogenides(MnX,X=S,Se,Te)based on the chemical vapor deposition method.The as-grown samples exhibit large-area surfaces of single facet,high-crystallinity,and ordered domain orientation.As a proof-of-concept,we show the facet-dependent electrocatalytic property of non-layered 2D MnSe,proving they are ideal candidates for fundamental research.Furthermore,we elucidate the underlying mechanism of FEG during the vapor growth process by the interfacial energy derived nucleation models.The method developed in this work provides new opportunities for regulating and designing the structure of 2D materials.展开更多
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability an...Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.展开更多
Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare L...Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare La-doped medical stone powders(La-MSPs), which are inexpensive mesoporous materials, as a new kind of conductive filler material. The prepared La-MSPs attained a resistivity of 450 ?·m and were used as a filler to prepare conductive coatings with epoxy resin as the resin matrix. The influence of the La-MSPs dosage on the resistance and hardness of the coatings was also determined. The resistance and the hardness both decreased with increasing filler dosage. Finally, the optimum recipe of the conductive coatings with the most suitable fillers dosage(55 wt%) was obtained. The hardness and resistance of the coatings with 55 wt% La-MSPs were HV 4 and 5.5 × 10~7 ?, respectively.展开更多
深化专业课程教育教学改革,培养大学生的创新精神、职业素养和工程实践能力,是地方本科院校普遍面临的难点问题。以滁州学院为例,介绍了该校化学工程与工艺专业教师团队将工程教育专业认证和学习产出教育(outcomes based education,OBE...深化专业课程教育教学改革,培养大学生的创新精神、职业素养和工程实践能力,是地方本科院校普遍面临的难点问题。以滁州学院为例,介绍了该校化学工程与工艺专业教师团队将工程教育专业认证和学习产出教育(outcomes based education,OBE)理念融入专业课程改革,并从教育教学改革理念与思路、课程思政育人模式、课程内容体系设计、教学方法改革及教学考评方式5个方面采取的具体举措。结果表明:上述措施有利于知识传授和价值塑造互融互通,提升地方院校化工专业人才的工程实践能力。展开更多
基金supported by the National Natural Science Foundationthe National Key Technologies R&D Program (2011BAE28B01)the 863 Program (2013AA032501)
文摘1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
基金Science and Engineering Research Board(ECR/2015/000580).
文摘The focus of this study is to critically review the physiochemical and engineering properties of the fly ash and its applications in various fields.The utilization of fly ash has become a widespread area,but the amount of utilization is still a serious issue.It has many beneficial qualities(such as pozzolanic property,fineness,spherical shape,lightweight,etc.),which enhance its properties and make it suitable for its utilization as a new construction material.For the bulk utilization of fly ash,it should be employed in the areas independent of any other parameters.So that,the disposal problem can be reduced significantly.The knowledge of its physiochemical characteristic helps in the judgment of appropriate fly ash for any particular type of work.Fly ash can be utilized in other areas such as asphalt concrete,geopolymer concrete,ground improvement,agricultural sector,roller compacted concrete,brick,etc.that will reduce the existing ashes,and also the disposal problem can be solved appreciably.The implementation of fly ash must be avoided below the natural ground water level and below 4°C temperature conditions.
文摘Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineering(Bio Ch E)may be recognized as a significant branch of chemical engineering. It may consist of, but not limited to, the following three aspects: 1) Chemical engineering principles and unit operations in biological systems; 2) Process engineering principles for producing existing or developing new chemical products through living ‘devices';and 3) Chemical engineering processes and equipment that are designed and constructed through mimicking(does not have to reproduce one hundred percent) the biological systems including their physical–chemical and mechanical structures to deliver uniquely beneficial performances. This may also include the bio-inspired sensors for process monitoring. In this paper, the above aspects are defined and discussed which establishes the scope of BioChE.
基金This work is supported by Foundation of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research No.ICDDXN004Foundation of Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(52125309)the National Natural Science Foundation of China(51991343,51920105002,and 52102179)+4 种基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011752)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)Shenzhen Basic Research Project(JCYJ20200109144616617,JCYJ20220818101014029)Shuimu Tsinghua Scholar Program(2022SM092)China Postdoctoral Science Foundation(2021M691715)。
文摘Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from wet-chemistry methods but suffer from small size,low quality,and multi-facets,which is a major challenge hindering their facet-dependent property studies and applications.Here,we report the facet-engineered growth(FEG)of non-layered 2D manganese chalcogenides(MnX,X=S,Se,Te)based on the chemical vapor deposition method.The as-grown samples exhibit large-area surfaces of single facet,high-crystallinity,and ordered domain orientation.As a proof-of-concept,we show the facet-dependent electrocatalytic property of non-layered 2D MnSe,proving they are ideal candidates for fundamental research.Furthermore,we elucidate the underlying mechanism of FEG during the vapor growth process by the interfacial energy derived nucleation models.The method developed in this work provides new opportunities for regulating and designing the structure of 2D materials.
基金supported by the National Natural Science Foundation of China(Grant No.21905294)the Shanghai Sailing Program。
文摘Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.
基金financially supported by the Projects of Application Technology and Development of Harbin (No. 2016RAXXJ024)
文摘Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare La-doped medical stone powders(La-MSPs), which are inexpensive mesoporous materials, as a new kind of conductive filler material. The prepared La-MSPs attained a resistivity of 450 ?·m and were used as a filler to prepare conductive coatings with epoxy resin as the resin matrix. The influence of the La-MSPs dosage on the resistance and hardness of the coatings was also determined. The resistance and the hardness both decreased with increasing filler dosage. Finally, the optimum recipe of the conductive coatings with the most suitable fillers dosage(55 wt%) was obtained. The hardness and resistance of the coatings with 55 wt% La-MSPs were HV 4 and 5.5 × 10~7 ?, respectively.
文摘深化专业课程教育教学改革,培养大学生的创新精神、职业素养和工程实践能力,是地方本科院校普遍面临的难点问题。以滁州学院为例,介绍了该校化学工程与工艺专业教师团队将工程教育专业认证和学习产出教育(outcomes based education,OBE)理念融入专业课程改革,并从教育教学改革理念与思路、课程思政育人模式、课程内容体系设计、教学方法改革及教学考评方式5个方面采取的具体举措。结果表明:上述措施有利于知识传授和价值塑造互融互通,提升地方院校化工专业人才的工程实践能力。