用V1,V2,V3和V4表示正规带的4个给定的拟簇.利用幂等元半环上的同余关系分别给出了.V1,.V2,.V3和.V4中成员的次直积分解和这些拟簇的M al'cev积分解,并借助Zhao X Z的"(2,2)型代数的坚固构架"理论揭示了.V1∩N.B,.V3∩中...用V1,V2,V3和V4表示正规带的4个给定的拟簇.利用幂等元半环上的同余关系分别给出了.V1,.V2,.V3和.V4中成员的次直积分解和这些拟簇的M al'cev积分解,并借助Zhao X Z的"(2,2)型代数的坚固构架"理论揭示了.V1∩N.B,.V3∩中.NB成员的次直积分解与坚固构架之间的密切联系。展开更多
Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various stru...Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.展开更多
文摘用V1,V2,V3和V4表示正规带的4个给定的拟簇.利用幂等元半环上的同余关系分别给出了.V1,.V2,.V3和.V4中成员的次直积分解和这些拟簇的M al'cev积分解,并借助Zhao X Z的"(2,2)型代数的坚固构架"理论揭示了.V1∩N.B,.V3∩中.NB成员的次直积分解与坚固构架之间的密切联系。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.10471112)陕西省自然科学基金(the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A15)
基金Guo Yuqi was supported by the National Natural Science Foundation of China (Grant No. 10071068) the Provincial Applied Fundamental Research Foundation of Yunnan Province of China.
文摘Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.