A preliminary study of using maleic anhydride copolymer for protein binding has been carried out. The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back ...A preliminary study of using maleic anhydride copolymer for protein binding has been carried out. The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups. The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements. The protein content was determined by Bradford assay. To obtain optimum conditions, immersion time for protein binding was examined. Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage. The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 ug/cm2, although the film had low anhydride content (3%) on the surface.展开更多
The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene ...The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.展开更多
Copolymer of divinyl ether and maleic anhydride (DVE-co-MA) derivatives of cis-platinum complexes were synthesized and characterized by elementary analysis, IR and XPS ( X-ray photoelectron spectroscopy). The behavior...Copolymer of divinyl ether and maleic anhydride (DVE-co-MA) derivatives of cis-platinum complexes were synthesized and characterized by elementary analysis, IR and XPS ( X-ray photoelectron spectroscopy). The behavior of the products in biological environment was also studied. UV-visible and fluorescence spectra show that these polymer derivatives are able to exchange ligands with selected nucleophilic groups in biological environment.展开更多
文摘A preliminary study of using maleic anhydride copolymer for protein binding has been carried out. The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups. The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements. The protein content was determined by Bradford assay. To obtain optimum conditions, immersion time for protein binding was examined. Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage. The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 ug/cm2, although the film had low anhydride content (3%) on the surface.
基金Project Supported by the National Natural Science Foundation of China.
文摘The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.
基金Project supported by the Science Fund of the Chinese Academy of Sciences.
文摘Copolymer of divinyl ether and maleic anhydride (DVE-co-MA) derivatives of cis-platinum complexes were synthesized and characterized by elementary analysis, IR and XPS ( X-ray photoelectron spectroscopy). The behavior of the products in biological environment was also studied. UV-visible and fluorescence spectra show that these polymer derivatives are able to exchange ligands with selected nucleophilic groups in biological environment.