While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me...While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.展开更多
With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signatu...With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices.展开更多
Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connect...Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged.展开更多
The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which ...The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks.展开更多
The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Unif...The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99.展开更多
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ...Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.展开更多
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw...With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations.展开更多
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia...The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.展开更多
IoT(Internet of Things)devices are being used more and more in a variety of businesses and for a variety of tasks,such as environmental data collection in both civilian and military situations.They are a desirable att...IoT(Internet of Things)devices are being used more and more in a variety of businesses and for a variety of tasks,such as environmental data collection in both civilian and military situations.They are a desirable attack target for malware intended to infect specific IoT devices due to their growing use in a variety of applications and their increasing computational and processing power.In this study,we investigate the possibility of detecting IoT malware using recurrent neural networks(RNNs).RNNis used in the proposed method to investigate the execution operation codes of ARM-based Internet of Things apps(OpCodes).To train our algorithms,we employ a dataset of IoT applications that includes 281 malicious and 270 benign pieces of software.The trained model is then put to the test using 100 brand-new IoT malware samples across three separate LSTM settings.Model exposure was not previously conducted on these samples.Detecting newly crafted malware samples with 2-layer neurons had the highest accuracy(98.18%)in the 10-fold cross validation experiment.A comparison of the LSTMtechnique to other machine learning classifiers shows that it yields the best results.展开更多
In order to detect web shells that hackers inject into web servers by exploiting system vulnerabilities or web page open sources, a novel web shell detection system based on the scoring scheme is proposed, named Evil-...In order to detect web shells that hackers inject into web servers by exploiting system vulnerabilities or web page open sources, a novel web shell detection system based on the scoring scheme is proposed, named Evil-hunter. First, a large set of malicious function samples normally used in web shells are collected from various sources on the Internet and security forums. Secondly, according to the danger level and the frequency of using these malicious functions in the web shells as well as in legal web applications, an assigning score strategy for each malicious sample is devised. Then, the appropriate score threshold value for each sample is obtained from the results of a statistical analysis. Finally, based on the threshold value, a simple algorithm is presented to identify files that contain web shells in web applications. The experimental results show that compared with other approaches, Evil-hunter can identify web shells more efficiently and accurately.展开更多
In recent years,the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware.Malware detection has...In recent years,the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware.Malware detection has attracted more attention and still faces severe challenges.As malware detection based traditional machine learning relies on exports’experience to design efficient features to distinguish different malware,it causes bottleneck on feature engineer and is also time-consuming to find efficient features.Due to its promising ability in automatically proposing and selecting significant features,deep learning has gradually become a research hotspot.In this paper,aiming to detect the malicious payload and identify their categories with high accuracy,we proposed a packet-based malicious payload detection and identification algorithm based on object detection deep learning network.A dataset of malicious payload on code execution vulnerability has been constructed under the Metasploit framework and used to evaluate the performance of the proposed malware detection and identification algorithm.The experimental results demonstrated that the proposed object detection network can efficiently find and identify malicious payloads with high accuracy.展开更多
Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best asp...Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs.展开更多
Background:In recent years,blockchain technology has attracted considerable attention.It records cryptographic transactions in a public ledger that is difficult to alter and compromise because of the distributed conse...Background:In recent years,blockchain technology has attracted considerable attention.It records cryptographic transactions in a public ledger that is difficult to alter and compromise because of the distributed consensus.As a result,blockchain is believed to resist fraud and hacking.Results:This work explores the types of fraud and malicious activities that can be prevented by blockchain technology and identifies attacks to which blockchain remains vulnerable.Conclusions:This study recommends appropriate defensive measures and calls for further research into the techniques for fighting malicious activities related to blockchains.展开更多
The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has rec...The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios.展开更多
In this paper, an optimized rmlicious nodes detection algorithm, based on Weighted Confidence Filter (WCF), is proposed to protect sensor networks from attacks. In this algorithm, each cluster head in a cluster-base...In this paper, an optimized rmlicious nodes detection algorithm, based on Weighted Confidence Filter (WCF), is proposed to protect sensor networks from attacks. In this algorithm, each cluster head in a cluster-based hierarchical network figures out an average confidence degree by means of messages from its child nodes. The cluster head only accepts a message from the child node whose confidence degree is higher than the average. Meanwhile, it updates the confidence degrees for each of its child nodes by comparing the aggregation value and the received messages, and regards them as the weight of exactness of messages from nodes. A sensor node is judged to be rmlicious if its weight value is lower than the predefined threshold. Comparative simulation results verify that the proposed WCF algorithm is better than the Weighted Trust Evaluation (WTE) in terms of the detection ratio and the false alarm ratio. More specifically, with the WCF, the detection ratio is significantly improved and the false alarm ratio is observably reduced, especially when the malicious node ratio is 0.25 or greater. When 40% of 100 sensors are malicious, the detection accuracy is above 90% and the false alarm ratio is nearly only 1.8%.展开更多
In this paper, we present an SEIQRS epidemic model with non-linear incidence function. The proposed model exhibits two equilibrium points, the virus free equilibrium and viral equilibrium. The model stability is conne...In this paper, we present an SEIQRS epidemic model with non-linear incidence function. The proposed model exhibits two equilibrium points, the virus free equilibrium and viral equilibrium. The model stability is connected with the basic reproduction number R0. If R0 R0 > 1, then the model is locally and globally stable at viral equilibrium point. Numerical methods are used for supporting the analytical work.展开更多
The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to ...The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.展开更多
Spam is no longer just commercial unsolicited email messages that waste our time, it consumes network traffic and mail servers’ storage. Furthermore, spam has become a major component of several attack vectors includ...Spam is no longer just commercial unsolicited email messages that waste our time, it consumes network traffic and mail servers’ storage. Furthermore, spam has become a major component of several attack vectors including attacks such as phishing, cross-site scripting, cross-site request forgery and malware infection. Statistics show that the amount of spam containing malicious contents increased compared to the one advertising legitimate products and services. In this paper, the issue of spam detection is investigated with the aim to develop an efficient method to identify spam email based on the analysis of the content of email messages. We identify a set of features that have a considerable number of malicious related features. Our goal is to study the effect of these features in helping the classical classifiers in identifying spam emails. To make the problem more challenging, we developed spam classification models based on imbalanced data where spam emails form the rare class with only 16.5% of the total emails. Different metrics were utilized in the evaluation of the developed models. Results show noticeable improvement of spam classification models when trained by dataset that includes malicious related features.展开更多
This paper introduces the background,illustrates the hardware structure and software features of malicious base station,explains its work principle,presents a method of detecting malicious base station,analyses the ex...This paper introduces the background,illustrates the hardware structure and software features of malicious base station,explains its work principle,presents a method of detecting malicious base station,analyses the experiment and evaluates the experimental results to verify the reliability of this method.Finally proposes the future work.展开更多
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi...In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data.展开更多
基金This research was funded by National Natural Science Foundation of China under Grant No.61806171Sichuan University of Science&Engineering Talent Project under Grant No.2021RC15+2 种基金Open Fund Project of Key Laboratory for Non-Destructive Testing and Engineering Computer of Sichuan Province Universities on Bridge Inspection and Engineering under Grant No.2022QYJ06Sichuan University of Science&Engineering Graduate Student Innovation Fund under Grant No.Y2023115The Scientific Research and Innovation Team Program of Sichuan University of Science and Technology under Grant No.SUSE652A006.
文摘While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.
基金supported by the Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korean Government(MOTIE)(P0008703,The Competency Development Program for Industry Specialists)MSIT under the ICAN(ICT Challenge and Advanced Network of HRD)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning and Evaluation(IITP).
文摘With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices.
基金the National Key Research and Development Program of China(No.2020YFB1005805)Peng Cheng Laboratory Project(Grant No.PCL2021A02)+2 种基金Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005)Shenzhen Basic Research(General Project)(No.JCYJ20190806142601687)Shenzhen Stable Supporting Program(General Project)(No.GXWD20201230155427003-20200821160539001).
文摘Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged.
基金in part by National Undergraduate Innovation and Entrepreneurship Training Program under Grant No.202310347039Zhejiang Provincial Natural Science Foundation of China under Grant No.LZ22F020002Huzhou Science and Technology Planning Foundation under Grant No.2023GZ04.
文摘The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks.
基金supported by a grant of the Ministry of Research,Innovation and Digitization,CNCS-UEFISCDI,Project Number PN-Ⅲ-P4-PCE-2021-0334,within PNCDI Ⅲ.
文摘The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99.
基金support this work is the Key Research and Development Program of Heilongjiang Province,specifically Grant Number 2023ZX02C10.
文摘Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.
文摘With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations.
基金funded by National Natural Science Foundation of China(under Grant No.61905201)。
文摘The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.
文摘IoT(Internet of Things)devices are being used more and more in a variety of businesses and for a variety of tasks,such as environmental data collection in both civilian and military situations.They are a desirable attack target for malware intended to infect specific IoT devices due to their growing use in a variety of applications and their increasing computational and processing power.In this study,we investigate the possibility of detecting IoT malware using recurrent neural networks(RNNs).RNNis used in the proposed method to investigate the execution operation codes of ARM-based Internet of Things apps(OpCodes).To train our algorithms,we employ a dataset of IoT applications that includes 281 malicious and 270 benign pieces of software.The trained model is then put to the test using 100 brand-new IoT malware samples across three separate LSTM settings.Model exposure was not previously conducted on these samples.Detecting newly crafted malware samples with 2-layer neurons had the highest accuracy(98.18%)in the 10-fold cross validation experiment.A comparison of the LSTMtechnique to other machine learning classifiers shows that it yields the best results.
基金The Science and Technology Support Program of Jiangsu Province(No.BE2011173)the Future Network Proactive Program of Jiangsu Province(No.BY2013095-5-03)the Program for Special Talent in Six Fields of Jiangsu Province(No.2011-DZ024)
文摘In order to detect web shells that hackers inject into web servers by exploiting system vulnerabilities or web page open sources, a novel web shell detection system based on the scoring scheme is proposed, named Evil-hunter. First, a large set of malicious function samples normally used in web shells are collected from various sources on the Internet and security forums. Secondly, according to the danger level and the frequency of using these malicious functions in the web shells as well as in legal web applications, an assigning score strategy for each malicious sample is devised. Then, the appropriate score threshold value for each sample is obtained from the results of a statistical analysis. Finally, based on the threshold value, a simple algorithm is presented to identify files that contain web shells in web applications. The experimental results show that compared with other approaches, Evil-hunter can identify web shells more efficiently and accurately.
基金This work was supported by Natural Science Foundation of China(61702013,61572492)the National Key research and Development Plan(Grant No.2018YFB0803504)+1 种基金Joint of Beijing Natural Science Foundation and Education Commission(KZ201810009011)Science and Technology Innovation Project of North China University of Technology(19XN108).
文摘In recent years,the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware.Malware detection has attracted more attention and still faces severe challenges.As malware detection based traditional machine learning relies on exports’experience to design efficient features to distinguish different malware,it causes bottleneck on feature engineer and is also time-consuming to find efficient features.Due to its promising ability in automatically proposing and selecting significant features,deep learning has gradually become a research hotspot.In this paper,aiming to detect the malicious payload and identify their categories with high accuracy,we proposed a packet-based malicious payload detection and identification algorithm based on object detection deep learning network.A dataset of malicious payload on code execution vulnerability has been constructed under the Metasploit framework and used to evaluate the performance of the proposed malware detection and identification algorithm.The experimental results demonstrated that the proposed object detection network can efficiently find and identify malicious payloads with high accuracy.
基金This work was supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2016R1C1B1014069)in part by the National Research Foundation of Korea(NRF)funded by the Korea government(MIST)(No.2021R1A2C1013150).
文摘Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs.
文摘Background:In recent years,blockchain technology has attracted considerable attention.It records cryptographic transactions in a public ledger that is difficult to alter and compromise because of the distributed consensus.As a result,blockchain is believed to resist fraud and hacking.Results:This work explores the types of fraud and malicious activities that can be prevented by blockchain technology and identifies attacks to which blockchain remains vulnerable.Conclusions:This study recommends appropriate defensive measures and calls for further research into the techniques for fighting malicious activities related to blockchains.
基金partially funded by the National Natural Science Foundation of China (Grant No. 61272447)National Entrepreneurship & Innovation Demonstration Base of China (Grant No. C700011)Key Research & Development Project of Sichuan Province of China (Grant No. 2018G20100)
文摘The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios.
基金Acknowledgements This paper was supported by the National Natural Science Foundation of China under Cant No. 61170219 the Natural Science Foundation Project of CQ CSTC under Grants No. 2009BB2278, No201 1jjA40028 the 2011 Talent Plan of Chongqing Higher Education.
文摘In this paper, an optimized rmlicious nodes detection algorithm, based on Weighted Confidence Filter (WCF), is proposed to protect sensor networks from attacks. In this algorithm, each cluster head in a cluster-based hierarchical network figures out an average confidence degree by means of messages from its child nodes. The cluster head only accepts a message from the child node whose confidence degree is higher than the average. Meanwhile, it updates the confidence degrees for each of its child nodes by comparing the aggregation value and the received messages, and regards them as the weight of exactness of messages from nodes. A sensor node is judged to be rmlicious if its weight value is lower than the predefined threshold. Comparative simulation results verify that the proposed WCF algorithm is better than the Weighted Trust Evaluation (WTE) in terms of the detection ratio and the false alarm ratio. More specifically, with the WCF, the detection ratio is significantly improved and the false alarm ratio is observably reduced, especially when the malicious node ratio is 0.25 or greater. When 40% of 100 sensors are malicious, the detection accuracy is above 90% and the false alarm ratio is nearly only 1.8%.
文摘In this paper, we present an SEIQRS epidemic model with non-linear incidence function. The proposed model exhibits two equilibrium points, the virus free equilibrium and viral equilibrium. The model stability is connected with the basic reproduction number R0. If R0 R0 > 1, then the model is locally and globally stable at viral equilibrium point. Numerical methods are used for supporting the analytical work.
基金supported by the National Natural Science Foundation of China(61872006)Scientific Research Activities Foundation of Academic and Technical Leaders and Reserve Candidates in Anhui Province(2020H233)+2 种基金Top-notch Discipline(specialty)Talents Foundation in Colleges and Universities of Anhui Province(gxbj2020057)the Startup Foundation for Introducing Talent of NUISTby Institutional Fund Projects from Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia(IFPDP-216-22)。
文摘The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.
文摘Spam is no longer just commercial unsolicited email messages that waste our time, it consumes network traffic and mail servers’ storage. Furthermore, spam has become a major component of several attack vectors including attacks such as phishing, cross-site scripting, cross-site request forgery and malware infection. Statistics show that the amount of spam containing malicious contents increased compared to the one advertising legitimate products and services. In this paper, the issue of spam detection is investigated with the aim to develop an efficient method to identify spam email based on the analysis of the content of email messages. We identify a set of features that have a considerable number of malicious related features. Our goal is to study the effect of these features in helping the classical classifiers in identifying spam emails. To make the problem more challenging, we developed spam classification models based on imbalanced data where spam emails form the rare class with only 16.5% of the total emails. Different metrics were utilized in the evaluation of the developed models. Results show noticeable improvement of spam classification models when trained by dataset that includes malicious related features.
文摘This paper introduces the background,illustrates the hardware structure and software features of malicious base station,explains its work principle,presents a method of detecting malicious base station,analyses the experiment and evaluates the experimental results to verify the reliability of this method.Finally proposes the future work.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601part by the National Natural Science Foundation of China(Grant No.U22A2002,61941104,62201605)part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data.