What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore th...What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore the functional mechanism of nutrient elements during the course of RA construction. The cultivation system of filter paper is utilized to research the effect of nutrient deficiency on the RA of Malus hupehensis (Pamp.) Rehd. There may be eight types of RA. In complete Hogland solution, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root". With the lack of P, K or Ca, the main type of RA is "lateral roots clustering in the upper region primary root", and the "lateral roots clustering in the upper and middle regions of primary root" types of RA decrease. But with shortage of P, the type of lateral roots clustering in the upper and lower regions of primary root increases, and the type of lateral roots clustering in the middle region of primary root decreases, with the types of RA diversified. Under the condition of K deficiency, the type of no lateral root increases and types of lateral roots clustering in the middle region of primary root decrease, and the percentage of such types as "no lateral root", "lateral roots clustering in the upper region of primary root", and "lateral roots clustering in the upper and middle regions of primary root" accounts for 97.9% in all, with the types of RA simplified. With lack of Fe, Mg or Zn, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root", but the type of lateral roots evenly-distributed on primary root increases. The main type of RA is "lateral roots evenlydistributed on primary root", under the condition of N deficiency, and the types of RA turn out to be diversified. There exists a close relation between nutrient deficiency and RA changes. Owing to various forms of nutrient deficiency, correspondingly different types of RA have been produced.展开更多
This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechani...This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechanisms of inhibition damage caused by continuous cultivation of apple tree.20 mL of solution containing different concentrations of cinnamon acid was added into container with the tested seedlings.After treatment,the samples were taken periodically and the respiratory rates were measured by OXY-LAB oxygen electrodes under 25°C stable temperature and then the activities of related enzymes were measured.The rates of total respiration and other 2 pathways [tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP)] appeared initially an increasing treads and late (on the 3rd d) began to decline.However,they again appeared an increase trend at the end period,on the contrast,the respiratory rate of embden-meyer- hot-parnas (EMP) pathway appeared a stead decline tread but it had a recover on the last day.The respiratory rate of total and 3 pathways were decreased under 125 mg kg-1 (soil).The dynamic trends of the enzymes activities of pyrophosphate-dependent phosphofructokinase (PFK),glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) showed similarly.In conclusion,treatments of certain concentration of cinnamon acid would inhibit the respiratory rate and related enzymes activity of roots of M.hupehensis Rehd.And the inhibition degrees were positively related with concentration of cinnamon acid treatments.展开更多
The free putrescine (Put) content, the hydrogen peroxide (H202) content and the polyamine oxidase (PAO) activity in roots of Malus hupehensis Rehd. var. pinyiensis Jiang (PYTC) were significantly increased, an...The free putrescine (Put) content, the hydrogen peroxide (H202) content and the polyamine oxidase (PAO) activity in roots of Malus hupehensis Rehd. var. pinyiensis Jiang (PYTC) were significantly increased, and reached its peak at 1, 2 and 6 h, respectively, under cadmium treatment. The free spermine (Spin) and spermidine (Spd) contents were dramatically decreased, and reached the minimum value at 4-6 h, then remained relatively stable. The change in total free polyammes (PAs) content was consistent with that of free Put. The number of root dead cells was gradually increased after treatment for 24 h, and the typical characteristics of programmed cell death (PCD) were displayed at 48 h. Throughout the Cd treatment process, changes in PAs metabolism appeared to be prior to cell death increase, and the H2O2 content was always maintained at a high level. These results indicated that polyamines could initiate cell death by generating H2O2 in roots of Malus hupehensis Rehd. under CdSO4 stress.展开更多
Manganese(Mn)is one of the essential microelements in all organisms.However,high level of Mn is deleterious to plants.In this study,the effects of exogenous manganese application on mineral element,polyamine(PA)and an...Manganese(Mn)is one of the essential microelements in all organisms.However,high level of Mn is deleterious to plants.In this study,the effects of exogenous manganese application on mineral element,polyamine(PA)and antioxidant accumulation,as well as polyamine metabolic and antioxidant enzyme activities,were investigated in Malus robusta Rehd.,a widely grown apple rootstock.High level of Mn treatments decreased endogenous Mg,Na,K and Ca contents,but increased Zn content,in a Mn-concentration-dependent manner.Polyamine metabolic assays revealed that,except the content of perchloric acid insoluble bound(PIS-bound)spermine,which increased significantly,the contents of putrescine(Put),spermidine(Spd)and spermine(Spm)all decreased progressively,accompanied with the decreased activities of arginine decarboxylase(ADC,EC 4.1.1.19)and ornithine decarboxylase(ODC,EC 4.1.1.17),and the increased activities of diamine oxidase(DAO,EC 1.4.3.6)and polyamine oxidase(PAO,EC 1.5.3.3).Further antioxidant capacity analyses demonstrated that contents of anthocyanin,non-protein thiols(NPT)and soluble sugar,and the activities of guaiacol peroxidase(POD,EC 1.11.1.7),catalase(CAT,EC 1.11.1.6)and superoxide dismutase(SOD,EC 1.15.1.1),also increased upon different concentrations of Mn treatments.Our results suggest that endogenous ion homeostasis is affected by high level of Mn application,and polyamine and antioxidant metabolism is involved in the responses of M.robusta Rehd.plants to high level of Mn stress.展开更多
Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing counte...Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.展开更多
Malus hupehensis (Pamp.) Rehd. is a widely cultivated rootstock in China. We studied the effect of three NO3-/NH4+ ratios (100/0, 50/50, and 0/100, molar basis) at total nitrogen (N) concentration of 8 mmoL L-1...Malus hupehensis (Pamp.) Rehd. is a widely cultivated rootstock in China. We studied the effect of three NO3-/NH4+ ratios (100/0, 50/50, and 0/100, molar basis) at total nitrogen (N) concentration of 8 mmoL L-1 in a nutrient solution on M. hupehensis seedlings. Plant biomass, NO3- and NH4+concentrafion, chlorophyll con- tent, respiratory rate, and cellular structure were investi- gated. M. hupehensis seedlings at the NO3-/NH4+ ratio of 50/50 had the highest level of fresh weight, dry weight, shoot length, and chlorophyll (a, b, and a + b) content, but the lowest respiration rate in the leavesand roots. In addition, thickness and numbers of palisade and spongy tissue cells of the leaves were greater with this treatment than with other treatments. At the NO3-/NH4+ ratio of 100/0, the leaves and roots had higher NO3- concentration and lower NH4+ concentration. However, the opposite trend occurred at the NO3-/NH4+ ratio of 0/100. Chloro- phyll (a, b, and a + b) content was lowest at the NO3-/NH4+ ratio of 100/0 than at the other ratios. At the NO3-/ NH4+ ratio of 0/100, oxygen (02) consumption increased in the leaves and roots, and irregular epidermis and cortex cells were observed in the root apical meristematic and mature region. Our results indicated that the NO3-INH4+ ratio at 50/50 was suitable for growth of M. hupehensis seedling to achieve the highest biomass production and efficiency.展开更多
We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis f...We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis for reducing the obstacles associated with apple replant disease(ARD).Isolates were screened using Salkowski colorimetry and screening medium for phloridzin.The isolate of interest(W6)was identified as Ochrobactrum haematophilum based on morphological analysis,physiological and biochemical tests,and 16S rDNA sequencing.In a laboratory experiment,W6 produced auxin and promoted the growth of Arabidopsis thaliana roots,and its degradation rate of 100 mg.L^(-1 )phloridzin was 62.0%.In a pot experiment,W6 significantly reduced the phenolic acid contents of replanted soil,lowered the abundance of the harmful fungus Fusarium solani,and increased soil enzyme activities,thereby improving the micro-ecological environment of replant soil.W6 increased the root antioxidant enzyme activity and leaf photosynthetic pigment content of replanted Malus hupehensis Rehd.seedlings,effectively alleviating the decrease in net photosynthetic rate,transpiration rate and stomatal conductance caused by ARD.In a field experiment,W6 also promoted the growth of replanted apple(the rootstock is M9T337 and the scion is Yanfu 3)saplings.Therefore,W6 can promote apple growth and degrade phenolic acids,and it can be used as an effective treatment for the reduction of ARD.展开更多
文摘What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore the functional mechanism of nutrient elements during the course of RA construction. The cultivation system of filter paper is utilized to research the effect of nutrient deficiency on the RA of Malus hupehensis (Pamp.) Rehd. There may be eight types of RA. In complete Hogland solution, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root". With the lack of P, K or Ca, the main type of RA is "lateral roots clustering in the upper region primary root", and the "lateral roots clustering in the upper and middle regions of primary root" types of RA decrease. But with shortage of P, the type of lateral roots clustering in the upper and lower regions of primary root increases, and the type of lateral roots clustering in the middle region of primary root decreases, with the types of RA diversified. Under the condition of K deficiency, the type of no lateral root increases and types of lateral roots clustering in the middle region of primary root decrease, and the percentage of such types as "no lateral root", "lateral roots clustering in the upper region of primary root", and "lateral roots clustering in the upper and middle regions of primary root" accounts for 97.9% in all, with the types of RA simplified. With lack of Fe, Mg or Zn, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root", but the type of lateral roots evenly-distributed on primary root increases. The main type of RA is "lateral roots evenlydistributed on primary root", under the condition of N deficiency, and the types of RA turn out to be diversified. There exists a close relation between nutrient deficiency and RA changes. Owing to various forms of nutrient deficiency, correspondingly different types of RA have been produced.
基金suppoted by the Project of 948 from Ministry of Agriculture of China (2006-G28)the Non-profit Research Foundation from Ministry of Agriculture of China (nyhyzx07-024)+1 种基金the Ear Marked Fund for Modern Agro-Industry Technology Research System, Chinathe Key Innovation Project for Agricultural Application Technology of Shandong Province, China.
文摘This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechanisms of inhibition damage caused by continuous cultivation of apple tree.20 mL of solution containing different concentrations of cinnamon acid was added into container with the tested seedlings.After treatment,the samples were taken periodically and the respiratory rates were measured by OXY-LAB oxygen electrodes under 25°C stable temperature and then the activities of related enzymes were measured.The rates of total respiration and other 2 pathways [tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP)] appeared initially an increasing treads and late (on the 3rd d) began to decline.However,they again appeared an increase trend at the end period,on the contrast,the respiratory rate of embden-meyer- hot-parnas (EMP) pathway appeared a stead decline tread but it had a recover on the last day.The respiratory rate of total and 3 pathways were decreased under 125 mg kg-1 (soil).The dynamic trends of the enzymes activities of pyrophosphate-dependent phosphofructokinase (PFK),glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) showed similarly.In conclusion,treatments of certain concentration of cinnamon acid would inhibit the respiratory rate and related enzymes activity of roots of M.hupehensis Rehd.And the inhibition degrees were positively related with concentration of cinnamon acid treatments.
基金the National Natural Science Foundation of China (30671452 and 31171923)
文摘The free putrescine (Put) content, the hydrogen peroxide (H202) content and the polyamine oxidase (PAO) activity in roots of Malus hupehensis Rehd. var. pinyiensis Jiang (PYTC) were significantly increased, and reached its peak at 1, 2 and 6 h, respectively, under cadmium treatment. The free spermine (Spin) and spermidine (Spd) contents were dramatically decreased, and reached the minimum value at 4-6 h, then remained relatively stable. The change in total free polyammes (PAs) content was consistent with that of free Put. The number of root dead cells was gradually increased after treatment for 24 h, and the typical characteristics of programmed cell death (PCD) were displayed at 48 h. Throughout the Cd treatment process, changes in PAs metabolism appeared to be prior to cell death increase, and the H2O2 content was always maintained at a high level. These results indicated that polyamines could initiate cell death by generating H2O2 in roots of Malus hupehensis Rehd. under CdSO4 stress.
基金This work was jointly supported by the following grants:The National Natural Science Foundation of China(31701866 and 31870576)The Youth Fund of Shandong Natural Science Foundation(ZR2016CQ27)+1 种基金The National Key R&D Program of China(2019YFD1000500)the Key R&D project of Shandong Province(2018GNC110007).
文摘Manganese(Mn)is one of the essential microelements in all organisms.However,high level of Mn is deleterious to plants.In this study,the effects of exogenous manganese application on mineral element,polyamine(PA)and antioxidant accumulation,as well as polyamine metabolic and antioxidant enzyme activities,were investigated in Malus robusta Rehd.,a widely grown apple rootstock.High level of Mn treatments decreased endogenous Mg,Na,K and Ca contents,but increased Zn content,in a Mn-concentration-dependent manner.Polyamine metabolic assays revealed that,except the content of perchloric acid insoluble bound(PIS-bound)spermine,which increased significantly,the contents of putrescine(Put),spermidine(Spd)and spermine(Spm)all decreased progressively,accompanied with the decreased activities of arginine decarboxylase(ADC,EC 4.1.1.19)and ornithine decarboxylase(ODC,EC 4.1.1.17),and the increased activities of diamine oxidase(DAO,EC 1.4.3.6)and polyamine oxidase(PAO,EC 1.5.3.3).Further antioxidant capacity analyses demonstrated that contents of anthocyanin,non-protein thiols(NPT)and soluble sugar,and the activities of guaiacol peroxidase(POD,EC 1.11.1.7),catalase(CAT,EC 1.11.1.6)and superoxide dismutase(SOD,EC 1.15.1.1),also increased upon different concentrations of Mn treatments.Our results suggest that endogenous ion homeostasis is affected by high level of Mn application,and polyamine and antioxidant metabolism is involved in the responses of M.robusta Rehd.plants to high level of Mn stress.
基金supported by National Natural Science Foundation of China(31901964)the Science and Technology Project of Hebei Education Department,China(BJK2022012)+3 种基金the Innovation Ability Training Project for Graduate Student of Hebei Province,China(CXZZBS2023071)the Introduced Talents Project of Hebei Agricultural University,China(YJ201904)the Key Research and Development Project of Hebei Province,China(21326308D-02-03)the Earmarked Fund for the China Agricultural Research System,China(CARS-27).
文摘Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.
基金supported by the Agricultural Comprehensive Development Project of Hebei Province(No.2012ACDPHP01)
文摘Malus hupehensis (Pamp.) Rehd. is a widely cultivated rootstock in China. We studied the effect of three NO3-/NH4+ ratios (100/0, 50/50, and 0/100, molar basis) at total nitrogen (N) concentration of 8 mmoL L-1 in a nutrient solution on M. hupehensis seedlings. Plant biomass, NO3- and NH4+concentrafion, chlorophyll con- tent, respiratory rate, and cellular structure were investi- gated. M. hupehensis seedlings at the NO3-/NH4+ ratio of 50/50 had the highest level of fresh weight, dry weight, shoot length, and chlorophyll (a, b, and a + b) content, but the lowest respiration rate in the leavesand roots. In addition, thickness and numbers of palisade and spongy tissue cells of the leaves were greater with this treatment than with other treatments. At the NO3-/NH4+ ratio of 100/0, the leaves and roots had higher NO3- concentration and lower NH4+ concentration. However, the opposite trend occurred at the NO3-/NH4+ ratio of 0/100. Chloro- phyll (a, b, and a + b) content was lowest at the NO3-/NH4+ ratio of 100/0 than at the other ratios. At the NO3-/ NH4+ ratio of 0/100, oxygen (02) consumption increased in the leaves and roots, and irregular epidermis and cortex cells were observed in the root apical meristematic and mature region. Our results indicated that the NO3-INH4+ ratio at 50/50 was suitable for growth of M. hupehensis seedling to achieve the highest biomass production and efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.31672104)the earmarked fund for China Agriculture Research System(Grant No.CARS-27)+4 种基金Shandong Agricultural Major Applied Technology Innovation Project(Grant No.SD2019ZZ008)Taishan Scholar Funded Project(Grant No.20190923)Qingchuang Science and Technology Support Project of Shandong Colleges and Universities(Grant No.2019KJF020)Natural Science Foundation of Shandong Province(Grant No.ZR2020MC131)the National Key Research and Development Program of China(Grant No.2020YFD1000201).
文摘We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis for reducing the obstacles associated with apple replant disease(ARD).Isolates were screened using Salkowski colorimetry and screening medium for phloridzin.The isolate of interest(W6)was identified as Ochrobactrum haematophilum based on morphological analysis,physiological and biochemical tests,and 16S rDNA sequencing.In a laboratory experiment,W6 produced auxin and promoted the growth of Arabidopsis thaliana roots,and its degradation rate of 100 mg.L^(-1 )phloridzin was 62.0%.In a pot experiment,W6 significantly reduced the phenolic acid contents of replanted soil,lowered the abundance of the harmful fungus Fusarium solani,and increased soil enzyme activities,thereby improving the micro-ecological environment of replant soil.W6 increased the root antioxidant enzyme activity and leaf photosynthetic pigment content of replanted Malus hupehensis Rehd.seedlings,effectively alleviating the decrease in net photosynthetic rate,transpiration rate and stomatal conductance caused by ARD.In a field experiment,W6 also promoted the growth of replanted apple(the rootstock is M9T337 and the scion is Yanfu 3)saplings.Therefore,W6 can promote apple growth and degrade phenolic acids,and it can be used as an effective treatment for the reduction of ARD.