This paper describes the interaction between deep-seated landslides and man-made structures such as dams, penstocks, viaducts, and tunnels. Selected case studies are reported first with the intent to gain insights int...This paper describes the interaction between deep-seated landslides and man-made structures such as dams, penstocks, viaducts, and tunnels. Selected case studies are reported first with the intent to gain insights into the complexities associated with the interaction of these structures with deep-seated landslides(generally referred to as deep-seated gravity slope deformations, DSGSDs). The main features, which characterize these landslides, are mentioned together with the interaction problems encountered in each case. Given the main objective of this paper, the numerical modeling methods adopted are outlined as means for increase in the understanding of the interaction problems being investigated. With the above in mind, the attention moves to an important and unique case history dealing with the interaction of a large-size twin-tunnel excavated with an earth pressure balance(EPB)tunnel boring machine(TBM) and a deep-seated landslide, which was reactivated due to the stress changes induced by tunnel excavation in landslide shear zone. The geological and geotechnical conditions are described together with the available monitoring data on the landslide movements, based on the advanced and conventional monitoring tools used. Numerical modeling is illustrated as an aid to back-analyze the monitored surface and subsurface deformations and to assist in finding the appropriate engineering solution for putting the tunnel into service and as a follow-up means for future understanding and control of the interaction problems. The simulation is based on a novel time-dependent model representing the landslide behavior.展开更多
In this study the regeneration diversity of Syahkal forests afforestated and natural stands in north of Iran was studied and compared from the point of view of evenness and diversity index. In order to accomplish this...In this study the regeneration diversity of Syahkal forests afforestated and natural stands in north of Iran was studied and compared from the point of view of evenness and diversity index. In order to accomplish this study two natural and man-made stands that almost are located in the same height above the sea level were chosen. The area of each stand was 30 ha and the inventory was done by the random-systematic method with a 5R land measurement (500 m2) selected. Also, in order to study the regeneration in the center of each sample piece 125 square meters micro plots were formed. The results show that regeneration diversity index in natural stands is more than that in man-made stands which in this case Mc-Arthur index with 2.41 has the most amount while Simpson index with 0.543 has the least amount. But the evenness indexes in man-made stands are more than that in natural stand which the main reason is the purity of the man-made stand.展开更多
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(...The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.展开更多
Man-made lakes are alternative and potential habitats for biodiversity conservation, fisheries and extensive aquaculture. We investigated the ecology and the fish community structure of two (2) sand-dragged man-made l...Man-made lakes are alternative and potential habitats for biodiversity conservation, fisheries and extensive aquaculture. We investigated the ecology and the fish community structure of two (2) sand-dragged man-made lakes, Lake Ahozon and Lake Bewacodji of Southern Benin, with implications for species conservation, fisheries management and aquaculture valorization. From August 2014 to July 2015, habitats conditions were evaluated and fishes were sampled monthly with seine, cast net, experimental gill net and hooks in the open water and aquatic vegetation habitats of both lakes. Overall, the water quality of Lake Ahozon was globally favorable for the growth and the survival of the fish resources whereas Lake Bewacodji exhibited a poor water quality indicated mainly by an acid pH (mean: 6.32 ± 0.58) and low dissolved oxygen concentrations (mean: 3.52 ± 1.25 mg/l) caused by dense floating plants, Nymphea sp mainly and huge daily dumping of domestic wastes. The study revealed low species richness, d = 5.89 and d = 3.87, and low species diversity, H’ = 0.76 and H’ = 0.48 for Lakes Ahozon and Bewacodji, respectively, with Lake Ahozon more diverse than Lake Bewacodji. The fish community of Lake Ahozon comprised six (6) species, 3 cichlids Sarotherodon galilaeus, Oreochromis niloticus and Tilapia guineensis, the silver catfish, Chrysichthys nigrodigitatus (Claroteidae), the African bonytongue, Heterotis niloticus (Osteoglossidae), and the African catfish, Clarias gariepinus (Clariidae). Numerically, S. galilaeus dominated Lake Ahozon and made 85.21% of the sample. In Lake Bewacodji, the fish composition comprised four (4) species, Sarotherodon galilaeus multifasciatus, the dominant species making numerically 91.58% of the total sample, T. guineensis, C. gariepinus and C. nigrodigitatus. With regard to trophic structure, the fish assemblages of both lakes were numerically dominated by planktinovores/ detritivores, mainly S. galilaeus, O. niloticus, T. guineensis and C. nigrodigitatus making together 99.46% of Lake Ahozon fish community, and S. galilaeus multifasciatus, T. guineensis and C. nigrodigitatus accounting together for about 98.59% of Lake Bewacodji. In Lake Ahozon, standard length (SL) frequencies histograms showed an unimodal size distribution for H. niloticus, the nile tilapia O. niloticus and C. gariepinus whereas the two cichlids, S. galilaeus and T. guineensis exhibited a bimodal size distribution. In Lake Bewacodji, S. galilaeus multifasciatus, C. nigrodigitatus and C. gariepinus exhibited an unimodal size distribution. A sustainable exploitation of both man-made lakes requires the implementation of an integrated management scheme which should include habitat restoration and protection plan, fisheries/aquacultural valorization, ecological sound agriculture/ecotourism and environmental monitoring. 展开更多
The 25th China International Man-made Fiber Conference (Bengbu 2019)(hereinafter referred to as CIMFC 2019), themed on “Opening and Integaration for Interactive Development — Coordinated Progress of Global Man-Made ...The 25th China International Man-made Fiber Conference (Bengbu 2019)(hereinafter referred to as CIMFC 2019), themed on “Opening and Integaration for Interactive Development — Coordinated Progress of Global Man-Made Fiber Industry”, was convened in Bengbu City, Anhui Province. CIMFC 2019 was sponcored by China National Textile and Apparel Council (CNTAC), organized by China Chemical Fibers Association, Chi-na Textile International Exchange Center, and China BBCA Group Corp., supported by Bengbu Municipal People’s Goverment, and co-organized by Bengbu Investment Promotion and Foreign cooperation Center, Bengbu Municipal Bureau of Commerce and Foreign Affairs, and Oerlikon Man-made Fiber.展开更多
The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the wid...The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.展开更多
There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of ...There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.展开更多
Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy ...Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables.展开更多
As an important fundamental industry of the national economy,the man-made fiber industrial chain is integrated into the era development and it assumes the responsibility of advancing.Each link of the industrial chain ...As an important fundamental industry of the national economy,the man-made fiber industrial chain is integrated into the era development and it assumes the responsibility of advancing.Each link of the industrial chain is connected with each other.After the development and accumulation of several decades,the new produced polyester,PTA and other plants keep展开更多
Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo...Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.展开更多
In the festivedays whencelebrating the50th anniversa-ry of the found-ing of the Peo-ple’s Republic,and the 50th an-niversary of thefounding of theChinese Acad-emy of Scienc-es (CAS), it isnatural for thepeople to thi...In the festivedays whencelebrating the50th anniversa-ry of the found-ing of the Peo-ple’s Republic,and the 50th an-niversary of thefounding of theChinese Acad-emy of Scienc-es (CAS), it isnatural for thepeople to thinkwith pride ofChina’s展开更多
Studied by Mr. LIU Zhongzhu, ex Chairman of Fujian Academy of Agri Sciences, a combined technique of man—made biosphere in rice fields deserves notice. The research indicated that using man—made biosphere in rice fi...Studied by Mr. LIU Zhongzhu, ex Chairman of Fujian Academy of Agri Sciences, a combined technique of man—made biosphere in rice fields deserves notice. The research indicated that using man—made biosphere in rice fields can enrich soil, reduce the infects of diseases, insects and weeds, economize the use of pesticide and herbicide, decrease green house effect, and improve atmosphere. As tested, the yield for rice is usually 10500—12000 kg/ha, for fish is usually 2250—3250 kg/ha. Again, about 50%—60% fertilizer and 30%—50% pesticide can be saved. The net income increased $ 1,080—1,800 per ha.展开更多
This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated usin...This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement.展开更多
Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in d...Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.展开更多
基金support of Spea Ingegneria Europea SpA and Società Autostrade per l’Italia SpA
文摘This paper describes the interaction between deep-seated landslides and man-made structures such as dams, penstocks, viaducts, and tunnels. Selected case studies are reported first with the intent to gain insights into the complexities associated with the interaction of these structures with deep-seated landslides(generally referred to as deep-seated gravity slope deformations, DSGSDs). The main features, which characterize these landslides, are mentioned together with the interaction problems encountered in each case. Given the main objective of this paper, the numerical modeling methods adopted are outlined as means for increase in the understanding of the interaction problems being investigated. With the above in mind, the attention moves to an important and unique case history dealing with the interaction of a large-size twin-tunnel excavated with an earth pressure balance(EPB)tunnel boring machine(TBM) and a deep-seated landslide, which was reactivated due to the stress changes induced by tunnel excavation in landslide shear zone. The geological and geotechnical conditions are described together with the available monitoring data on the landslide movements, based on the advanced and conventional monitoring tools used. Numerical modeling is illustrated as an aid to back-analyze the monitored surface and subsurface deformations and to assist in finding the appropriate engineering solution for putting the tunnel into service and as a follow-up means for future understanding and control of the interaction problems. The simulation is based on a novel time-dependent model representing the landslide behavior.
文摘In this study the regeneration diversity of Syahkal forests afforestated and natural stands in north of Iran was studied and compared from the point of view of evenness and diversity index. In order to accomplish this study two natural and man-made stands that almost are located in the same height above the sea level were chosen. The area of each stand was 30 ha and the inventory was done by the random-systematic method with a 5R land measurement (500 m2) selected. Also, in order to study the regeneration in the center of each sample piece 125 square meters micro plots were formed. The results show that regeneration diversity index in natural stands is more than that in man-made stands which in this case Mc-Arthur index with 2.41 has the most amount while Simpson index with 0.543 has the least amount. But the evenness indexes in man-made stands are more than that in natural stand which the main reason is the purity of the man-made stand.
文摘The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.
文摘Man-made lakes are alternative and potential habitats for biodiversity conservation, fisheries and extensive aquaculture. We investigated the ecology and the fish community structure of two (2) sand-dragged man-made lakes, Lake Ahozon and Lake Bewacodji of Southern Benin, with implications for species conservation, fisheries management and aquaculture valorization. From August 2014 to July 2015, habitats conditions were evaluated and fishes were sampled monthly with seine, cast net, experimental gill net and hooks in the open water and aquatic vegetation habitats of both lakes. Overall, the water quality of Lake Ahozon was globally favorable for the growth and the survival of the fish resources whereas Lake Bewacodji exhibited a poor water quality indicated mainly by an acid pH (mean: 6.32 ± 0.58) and low dissolved oxygen concentrations (mean: 3.52 ± 1.25 mg/l) caused by dense floating plants, Nymphea sp mainly and huge daily dumping of domestic wastes. The study revealed low species richness, d = 5.89 and d = 3.87, and low species diversity, H’ = 0.76 and H’ = 0.48 for Lakes Ahozon and Bewacodji, respectively, with Lake Ahozon more diverse than Lake Bewacodji. The fish community of Lake Ahozon comprised six (6) species, 3 cichlids Sarotherodon galilaeus, Oreochromis niloticus and Tilapia guineensis, the silver catfish, Chrysichthys nigrodigitatus (Claroteidae), the African bonytongue, Heterotis niloticus (Osteoglossidae), and the African catfish, Clarias gariepinus (Clariidae). Numerically, S. galilaeus dominated Lake Ahozon and made 85.21% of the sample. In Lake Bewacodji, the fish composition comprised four (4) species, Sarotherodon galilaeus multifasciatus, the dominant species making numerically 91.58% of the total sample, T. guineensis, C. gariepinus and C. nigrodigitatus. With regard to trophic structure, the fish assemblages of both lakes were numerically dominated by planktinovores/ detritivores, mainly S. galilaeus, O. niloticus, T. guineensis and C. nigrodigitatus making together 99.46% of Lake Ahozon fish community, and S. galilaeus multifasciatus, T. guineensis and C. nigrodigitatus accounting together for about 98.59% of Lake Bewacodji. In Lake Ahozon, standard length (SL) frequencies histograms showed an unimodal size distribution for H. niloticus, the nile tilapia O. niloticus and C. gariepinus whereas the two cichlids, S. galilaeus and T. guineensis exhibited a bimodal size distribution. In Lake Bewacodji, S. galilaeus multifasciatus, C. nigrodigitatus and C. gariepinus exhibited an unimodal size distribution. A sustainable exploitation of both man-made lakes requires the implementation of an integrated management scheme which should include habitat restoration and protection plan, fisheries/aquacultural valorization, ecological sound agriculture/ecotourism and environmental monitoring.
文摘The 25th China International Man-made Fiber Conference (Bengbu 2019)(hereinafter referred to as CIMFC 2019), themed on “Opening and Integaration for Interactive Development — Coordinated Progress of Global Man-Made Fiber Industry”, was convened in Bengbu City, Anhui Province. CIMFC 2019 was sponcored by China National Textile and Apparel Council (CNTAC), organized by China Chemical Fibers Association, Chi-na Textile International Exchange Center, and China BBCA Group Corp., supported by Bengbu Municipal People’s Goverment, and co-organized by Bengbu Investment Promotion and Foreign cooperation Center, Bengbu Municipal Bureau of Commerce and Foreign Affairs, and Oerlikon Man-made Fiber.
基金supported by the National Natural Science Foundation of China(Grant No.22273034)the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University。
文摘The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197 and 62203229)the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1211)。
文摘There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.
文摘Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables.
文摘As an important fundamental industry of the national economy,the man-made fiber industrial chain is integrated into the era development and it assumes the responsibility of advancing.Each link of the industrial chain is connected with each other.After the development and accumulation of several decades,the new produced polyester,PTA and other plants keep
基金the Postdoctoral ScienceFoundation of China(No.2023M730156)the NationalNatural Foundation of China(No.62301012).
文摘Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.
文摘In the festivedays whencelebrating the50th anniversa-ry of the found-ing of the Peo-ple’s Republic,and the 50th an-niversary of thefounding of theChinese Acad-emy of Scienc-es (CAS), it isnatural for thepeople to thinkwith pride ofChina’s
文摘Studied by Mr. LIU Zhongzhu, ex Chairman of Fujian Academy of Agri Sciences, a combined technique of man—made biosphere in rice fields deserves notice. The research indicated that using man—made biosphere in rice fields can enrich soil, reduce the infects of diseases, insects and weeds, economize the use of pesticide and herbicide, decrease green house effect, and improve atmosphere. As tested, the yield for rice is usually 10500—12000 kg/ha, for fish is usually 2250—3250 kg/ha. Again, about 50%—60% fertilizer and 30%—50% pesticide can be saved. The net income increased $ 1,080—1,800 per ha.
文摘This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YJKYYQ20190044)the National Key Research and Development Program of China (Grant No.2022YFB3903100)+1 种基金the High-level introduction of talent research start-up fund of Hefei Normal University in 2020 (Grant No.2020rcjj34)the HFIPS Director’s Fund (Grant No.YZJJ2022QN12).
文摘Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.