Due to the lack of color in manga(Japanese comics), black-and-white textures are often used to enrich visual experience. With the rising need to digitize manga, segmenting texture regions from manga has become an indi...Due to the lack of color in manga(Japanese comics), black-and-white textures are often used to enrich visual experience. With the rising need to digitize manga, segmenting texture regions from manga has become an indispensable basis for almost all manga processing, from vectorization to colorization. Unfortunately, such texture segmentation is not easy since textures in manga are composed of lines and exhibit similar features to structural lines(contour lines). So currently, texture segmentation is still manually performed, which is labor-intensive and time-consuming. To extract a texture region, various texture features have been proposed for measuring texture similarity, but precise boundaries cannot be achieved since boundary pixels exhibit different features from inner pixels. In this paper, we propose a novel method which also adopts texture features to estimate texture regions. Unlike existing methods, the estimated texture region is only regarded an initial, imprecise texture region. We expand the initial texture region to the precise boundary based on local smoothness via a graph-cut formulation. This allows our method to extract texture regions with precise boundaries. We have applied our method to various manga images and satisfactory results were achieved in all cases.展开更多
基金supported by the National Natural Science Foundation of China(Project No.61272293)Research Grants Council of the Hong Kong Special Administrative Region under RGC General Research Fund(Project Nos.CUHK14200915 and CUHK14217516)
文摘Due to the lack of color in manga(Japanese comics), black-and-white textures are often used to enrich visual experience. With the rising need to digitize manga, segmenting texture regions from manga has become an indispensable basis for almost all manga processing, from vectorization to colorization. Unfortunately, such texture segmentation is not easy since textures in manga are composed of lines and exhibit similar features to structural lines(contour lines). So currently, texture segmentation is still manually performed, which is labor-intensive and time-consuming. To extract a texture region, various texture features have been proposed for measuring texture similarity, but precise boundaries cannot be achieved since boundary pixels exhibit different features from inner pixels. In this paper, we propose a novel method which also adopts texture features to estimate texture regions. Unlike existing methods, the estimated texture region is only regarded an initial, imprecise texture region. We expand the initial texture region to the precise boundary based on local smoothness via a graph-cut formulation. This allows our method to extract texture regions with precise boundaries. We have applied our method to various manga images and satisfactory results were achieved in all cases.