期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An evolutionary game theory-based machine learning framework for predicting mandatory lane change decision
1
作者 Sixuan Xu Mengyun Li +2 位作者 Wei Zhou Jiyang Zhang Chen Wang 《Digital Transportation and Safety》 2024年第3期115-125,共11页
Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,w... Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,which can be categorized into physics-based models and machine-learning models.Both types of models have their advantages and disadvantages.To obtain a more advanced MLCD prediction method,this study proposes a hybrid architecture,which combines the Evolutionary Game Theory(EGT)based model(considering data efficient and interpretable)and the Machine Learning(ML)based model(considering high prediction accuracy)to model the mandatory lane change decision of multi-style drivers(i.e.EGTML framework).Therefore,EGT is utilized to introduce physical information,which can describe the progressive cooperative interactions between drivers and predict the decision-making of multi-style drivers.The generalization of the EGTML method is further validated using four machine learning models:ANN,RF,LightGBM,and XGBoost.The superiority of EGTML is demonstrated using real-world data(i.e.,Next Generation SIMulation,NGSIM).The results of sensitivity analysis show that the EGTML model outperforms the general ML model,especially when the data is sparse. 展开更多
关键词 mandatory lane change Evolutionary game theory Physics-informed machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部