Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,w...Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,which can be categorized into physics-based models and machine-learning models.Both types of models have their advantages and disadvantages.To obtain a more advanced MLCD prediction method,this study proposes a hybrid architecture,which combines the Evolutionary Game Theory(EGT)based model(considering data efficient and interpretable)and the Machine Learning(ML)based model(considering high prediction accuracy)to model the mandatory lane change decision of multi-style drivers(i.e.EGTML framework).Therefore,EGT is utilized to introduce physical information,which can describe the progressive cooperative interactions between drivers and predict the decision-making of multi-style drivers.The generalization of the EGTML method is further validated using four machine learning models:ANN,RF,LightGBM,and XGBoost.The superiority of EGTML is demonstrated using real-world data(i.e.,Next Generation SIMulation,NGSIM).The results of sensitivity analysis show that the EGTML model outperforms the general ML model,especially when the data is sparse.展开更多
基金supported by the National Key R&D Program of China(2023YFE0106800)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX24_0100).
文摘Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,which can be categorized into physics-based models and machine-learning models.Both types of models have their advantages and disadvantages.To obtain a more advanced MLCD prediction method,this study proposes a hybrid architecture,which combines the Evolutionary Game Theory(EGT)based model(considering data efficient and interpretable)and the Machine Learning(ML)based model(considering high prediction accuracy)to model the mandatory lane change decision of multi-style drivers(i.e.EGTML framework).Therefore,EGT is utilized to introduce physical information,which can describe the progressive cooperative interactions between drivers and predict the decision-making of multi-style drivers.The generalization of the EGTML method is further validated using four machine learning models:ANN,RF,LightGBM,and XGBoost.The superiority of EGTML is demonstrated using real-world data(i.e.,Next Generation SIMulation,NGSIM).The results of sensitivity analysis show that the EGTML model outperforms the general ML model,especially when the data is sparse.