A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study.The optical measurements,together with the range and range rate measurements from the ground-...A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study.The optical measurements,together with the range and range rate measurements from the ground-based radars,were used in the tracking scenarios.In many tracking scenarios,radar resources for non-cooperative targets are constrained,particularly for near-earth targets,where multiple objects can only be tracked by a single radar at a time.This limitation hinders the accurate estimation of noncooperative target maneuvers,and can at times result in target loss.Existing literature has addressed this issue to some extent through various maneuvering target-tracking methods.To address this problem,a hybrid maneuver detection and estimation method that combines the input detection and estimation extended kalman filter and the weighted nonlinear least squares method is presented.Simulation results demonstrate that the proposed method outperforms the previous method,offering more accurate and efficient estimations.展开更多
Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous...Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.展开更多
A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and ...A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.展开更多
This study investigates the problem of tracking a satellite performing unknown continuous maneuvers. A new method is proposed for estimating both the state and maneuver acceleration of the satellite. The estimation of...This study investigates the problem of tracking a satellite performing unknown continuous maneuvers. A new method is proposed for estimating both the state and maneuver acceleration of the satellite. The estimation of the maneuver acceleration is obtained by the combination of an unbiased minimum-variance input and state estimation method and a low-pass filter. Then a threshold-based maneuver detection approach is developed to determinate the start and end time of the unknown maneuvers. During the maneuvering period, the estimation error of the maneuver acceleration is modeled as the sum of a fluctuation error and a sudden change error. A robust extended Kalman filter is developed for dealing with the acceleration estimate error and providing state estimation. Simulation results show that, compared with the Unbiased Minimum-variance Input and State Estimation(UMISE) method, the proposed method has the same position estimation accuracy, and the velocity estimation error is reduced by about 5 times during the maneuver period. Besides, the acceleration detection and estimation accuracy of the proposed method is much higher than that of the UMISE method.展开更多
To address the problem of maneuvering target tracking, where the target trajectory has prolonged smooth regions and abrupt maneuvering regions, a modified variable rate particle filter (MVRPF) is proposed. First, a ...To address the problem of maneuvering target tracking, where the target trajectory has prolonged smooth regions and abrupt maneuvering regions, a modified variable rate particle filter (MVRPF) is proposed. First, a Cartesian-coordinate based variable rate model is presented. Compared with conventional variable rate models, the proposed model does not need any prior knowledge of target mass or external forces. Consequently, it is more convenient in practical tracking applications. Second, a maneuvering detection strategy is adopted to adaptively adjust the parameters in MVRPF, which helps allocate more state points at high maneuver regions and fewer at smooth regions. Third, in the presence of small measurement errors, the unscented particle filter, which is embedded in MVRPF, can move more particles into regions of high likelihood and hence can improve the tracking performance. Simulation results illustrate the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U21B2050).
文摘A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study.The optical measurements,together with the range and range rate measurements from the ground-based radars,were used in the tracking scenarios.In many tracking scenarios,radar resources for non-cooperative targets are constrained,particularly for near-earth targets,where multiple objects can only be tracked by a single radar at a time.This limitation hinders the accurate estimation of noncooperative target maneuvers,and can at times result in target loss.Existing literature has addressed this issue to some extent through various maneuvering target-tracking methods.To address this problem,a hybrid maneuver detection and estimation method that combines the input detection and estimation extended kalman filter and the weighted nonlinear least squares method is presented.Simulation results demonstrate that the proposed method outperforms the previous method,offering more accurate and efficient estimations.
基金supported by the National Natural Science Foundation of China(62222120,61871391,U1933135)Shandong Provincial Natural Science Foundation(ZR2021YQ43).
文摘Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.
文摘A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.11525208)
文摘This study investigates the problem of tracking a satellite performing unknown continuous maneuvers. A new method is proposed for estimating both the state and maneuver acceleration of the satellite. The estimation of the maneuver acceleration is obtained by the combination of an unbiased minimum-variance input and state estimation method and a low-pass filter. Then a threshold-based maneuver detection approach is developed to determinate the start and end time of the unknown maneuvers. During the maneuvering period, the estimation error of the maneuver acceleration is modeled as the sum of a fluctuation error and a sudden change error. A robust extended Kalman filter is developed for dealing with the acceleration estimate error and providing state estimation. Simulation results show that, compared with the Unbiased Minimum-variance Input and State Estimation(UMISE) method, the proposed method has the same position estimation accuracy, and the velocity estimation error is reduced by about 5 times during the maneuver period. Besides, the acceleration detection and estimation accuracy of the proposed method is much higher than that of the UMISE method.
基金Project supported by the National Natural Science Foundation of China(No.61174024)
文摘To address the problem of maneuvering target tracking, where the target trajectory has prolonged smooth regions and abrupt maneuvering regions, a modified variable rate particle filter (MVRPF) is proposed. First, a Cartesian-coordinate based variable rate model is presented. Compared with conventional variable rate models, the proposed model does not need any prior knowledge of target mass or external forces. Consequently, it is more convenient in practical tracking applications. Second, a maneuvering detection strategy is adopted to adaptively adjust the parameters in MVRPF, which helps allocate more state points at high maneuver regions and fewer at smooth regions. Third, in the presence of small measurement errors, the unscented particle filter, which is embedded in MVRPF, can move more particles into regions of high likelihood and hence can improve the tracking performance. Simulation results illustrate the effectiveness of the proposed method.