期刊文献+
共找到3,085篇文章
< 1 2 155 >
每页显示 20 50 100
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
1
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
2
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy PROCESSABILITY mechanical properties thermal stability
下载PDF
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
3
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Crack elimination and strength enhancement mechanisms of selective laser melted Si-modified Al−Mn−Mg−Er−Zr alloy
4
作者 Jiang YU Yao-xiang GENG +2 位作者 Hong-bo JU Zhi-jie ZHANG Jun-hua XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2431-2441,共11页
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur... In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys. 展开更多
关键词 selective laser melting Al−Mn−Mg−Er−Zr−Si alloy surface roughness PROCESSABILITY mechanical properties
下载PDF
Selective laser melted AZ91D magnesium alloy with superior balance of strength and ductility 被引量:1
5
作者 Xinzhi Li Xuewei Fang +3 位作者 Shuaipeng Wang Siqing Wang Min Zha Ke Huang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4644-4658,共15页
In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense an... In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense and crack-free AZ91D components with fine equiaxed grain structure. The formation mechanism of typical pore defects(gas pore, lack-of-fusion pore and keyhole pore) and melting modes(keyhole mode and conduction mode) were systematically studied by varying the laser power and scanning speed. The morphology and volume fraction of the pores under different processing conditions were characterized. A criterion based on the depth-to-width ratio of the melt pool was established to identify different melting modes. The strength and ductility(tensile strength up to 340 MPa and uniform elongation of 8.9%)of the as deposited AZ91D are far superior to those of the casting components and are comparable to those of its wrought counterparts.The superior balance of strength and ductility of SLMed AZ91D, as well as the negligible anisotropic properties are mainly ascribed to the extremely fine equiaxed grain structure(with average grain size of ~1.2 μm), as well as the discontinuous distribution of β-Al_(12)Mg_(17) phases. It thus provides an alternative way to fabricate high-strength magnesium alloys with complex geometry. 展开更多
关键词 Magnesium alloy Selective laser melting melting mode Defects Equiaxed grain structure Mechanical properties
下载PDF
Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour
6
作者 Lizi Cheng Xiaofeng Zhang +7 位作者 Jiacheng Xu Temitope Olumide Olugbade Gan Li Dongdong Dong Fucong Lyu Haojie Kong Mengke Huo Jian Lu 《Nano Materials Science》 EI CAS CSCD 2024年第5期587-595,共9页
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie... Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials. 展开更多
关键词 Architected materials Selective laser melting Surface mechanical attrition treatment Structural analysis Ductile alloy
下载PDF
Towards implementation of alloy-specific thermo-fluid modelling for laser powder-bed fusion of Mg alloys
7
作者 Mohammad Hoseini-Athar Mikael Ersson Peter Hedström 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2327-2344,共18页
Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF)... Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF).However,its capabilities for being implemented as a reliable tool for material design,where minor changes in material-related parameters must be accurately captured,is still in question.In the present research,first,a thermo-fluid computational fluid dynamics(CFD)model is developed and validated against experimental data.Considering the predicted material properties of the pure Mg and commercial ZK60 and WE43 Mg alloys,parametric studies are done attempting to elucidate how the difference in some of the material properties,i.e.,saturated vapor pressure,viscosity,and solidification range,can influence the melt pool dynamics.It is found that a higher saturated vapor pressure,associated with the ZK60 alloy,leads to a deeper unstable keyhole,increasing the keyhole-induced porosity and evaporation mass loss.Higher viscosity and wider solidification range can increase the non-uniformity of temperature and velocity distribution on the keyhole walls,resulting in increased keyhole instability and formation of defects.Finally,the WE43 alloy showed the best behavior in terms of defect formation and evaporation mass loss,providing theoretical support to the extensive use of this alloy in L-PBF.In summary,this study suggests an approach to investigate the effect of materials-related parameters on L-PBF melting and solidification,which can be extremely helpful for future design of new alloys suitable for L-PBF. 展开更多
关键词 Mg alloys Laser powder-bed fusion(L-PBF) melt pool dynamics Computational fluid dynamics Fluid flow
下载PDF
Microstructural evolution and dynamic recrystallization mechanisms of additively manufactured TiAl alloy with heterogeneous microstructure during hot compression
8
作者 Hui TAO Hui-zhong LI +5 位作者 Jia-hui LI Li WANG Wei-wei HE Xiao-fen TAN Rui ZHOU Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3208-3220,共13页
Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b... Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions. 展开更多
关键词 TiAl alloy selective electron beam melting heterogeneous microstructure discontinuous dynamic recrystallization(DDRX) continuous dynamic recrystallization(CDRX)
下载PDF
Effect of Nd content on electrochemical performances of nanocrystalline and amorphous (Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0-20) alloys prepared by melt spinning 被引量:10
9
作者 张羊换 杨泰 +3 位作者 卜文刚 蔡颖 张国芳 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3668-3676,共9页
The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the struct... The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the structure and electrochemical hydrogen storage performance of the alloys were investigated. The as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, suggesting that the addition of Nd facilitates the glass forming of the Mg2Ni-type alloys. Increasing the spinning rate from 0 to 40 m/s gives rise to the discharge capacity growing from 42.5 to 100.6 mA·h/g for the x=0 alloy and from 86.4 to 452.8 mA·h/g for the x=10 alloy. And the cycle stability (S20) rises from 40.2%to 41.1%for the x=0 alloy and from 53.2%to 89.7%for the x=10 alloy, respectively. 展开更多
关键词 hydrogen storage alloy Mg2Ni-type alloy ND melt spinning structure
下载PDF
Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling 被引量:7
10
作者 崔泽琴 施海霞 +1 位作者 王文先 许并社 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1446-1453,共8页
Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid... Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process. 展开更多
关键词 magnesium alloy laser surface melting liquid nitrogen-assisted cooling MICROHARDNESS corrosion resistance
下载PDF
Electrochemical codeposition of Mg-Li-Gd alloys from LiCl-KCl-MgCl_2-Gd_2O_3 melts 被引量:4
11
作者 魏树权 张密林 +3 位作者 韩伟 颜永得 张萌 张斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期825-829,共5页
Mg-Li-Gd alloys were prepared by electrochemical codeposition from LiCl-KCl-MgCl 2 -Gd 2 O 3 melts on molybdenum electrode with constant current density at 823 and 973 K. The microstructure of the Mg-Li-Gd alloys was ... Mg-Li-Gd alloys were prepared by electrochemical codeposition from LiCl-KCl-MgCl 2 -Gd 2 O 3 melts on molybdenum electrode with constant current density at 823 and 973 K. The microstructure of the Mg-Li-Gd alloys was analyzed by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The results show that magnesium and gadolinium deposit mainly in the first 30 min, and the alloy obtained contains 96.53% Mg, 0.27% Li and 3.20% Gd (mass fraction). Then, the reduction of lithium ions occurs quickly. The composition of alloy can be adjusted by controlling electrolysis time or Gd 2 O 3 concentration in LiCl-KCl melts. With the addition of Gd into Mg-Li alloys, the corrosion resistance of the alloys is enhanced. XRD results suggest that Mg 3 Gd and Mg 2 Gd can be formed in Mg-Li-Gd alloys. The distribution of Gd element in Mg-Li-Gd alloys indicates that Gd element mainly distributes at the grain boundaries of Mg-Li-Gd alloys. 展开更多
关键词 electrochemical codeposition Mg-Li-Gd alloy chloride melt galvanostatic electrolysis GD2O3
下载PDF
Effect of melt convection on primary dendrite arm spacing in directionally solidified Pb-26%Bi hypo-peritectic alloys 被引量:4
12
作者 胡小武 李双明 +2 位作者 高思峰 刘林 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期65-71,共7页
Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with diffe... Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite. 展开更多
关键词 Pb-26%Bi hypo-peritectic alloy primary dendrite arm spacing melt convection directional solidification
下载PDF
Simulation study on non-linear effects of initial melt temperatures on microstructures during solidification process of liquid Mg_7Zn_3 alloy 被引量:3
13
作者 刘让苏 梁永超 +5 位作者 刘海蓉 郑乃超 莫云飞 侯兆阳 周丽丽 彭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1052-1060,共9页
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru... The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be. 展开更多
关键词 liquid Mg-Zn alloy initial melt temperature microstructure evolution molecular dynamics simulation cluster-typeindex method
下载PDF
Melting purification process and refining effect of 5083 Al-Mg alloy 被引量:2
14
作者 马成国 亓淑艳 +2 位作者 李双 胥焕岩 何秀兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1346-1351,共6页
To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an... To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners. 展开更多
关键词 Al-Mg alloy meltING purification process grain refiner
下载PDF
Effects of melt overheating degree on undercooling degree and amorphous forming of Nd_9Fe_(85-x)Ti_4C_2B_x(x=10, 12) magnetic alloys
15
作者 杨梦琳 潘晶 +2 位作者 刘新才 肖晓燕 詹玉勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2633-2640,共8页
The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with ... The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with solidification structure analysis. The results indicate that the undercooling degree of Nd9Fe85-xTi4C2Bx(x=10, 12) alloys significantly increaseswith the rise of melt overheating degree, and two overheating degree thresholds corresponding to the drastic increase of the mean undercooling degree are found for each of the alloys. The existence of two turning points of the mean undercooling degreescan be linked to the structure transitions inside the overheated melts, which result in the evident increase of volume fraction of amorphous phasein the solidified structures. 展开更多
关键词 magnetic alloy melt overheating undercoolingdegree structure transition glass formability
下载PDF
Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy 被引量:7
16
作者 任海水 田象军 +2 位作者 刘栋 刘健 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1856-1864,共9页
A rectangular plate of Ti-6.5A1-3.5Mo-I.5Zr-0.3Si titanium alloy was fabricated by laser melting deposition (LMD) technology. Macrostructure and microstructure were characterized by optical microscope (OM) and sca... A rectangular plate of Ti-6.5A1-3.5Mo-I.5Zr-0.3Si titanium alloy was fabricated by laser melting deposition (LMD) technology. Macrostructure and microstructure were characterized by optical microscope (OM) and scanning electron microscope (SEM). Room temperature tensile properties were evaluated. Results indicate that the macro-morphology is dominated by large columnar grains traversing multiple deposited layers. Two kinds of bands, named the wide bands and the narrow bands, are observed. The wide band consists of crab-like a lath and Widmanstatten a colony. The narrow band consists of a lath and transformed ft. The formation mechanism of the two bands was explored. The influence of heat effect caused by subsequent deposition layers on microstructural evolution during deposition process was discussed. The room temperature tensile test demonstrates that the strength of laser deposited Ti-6.5A1-3.5Mo-I.5Zr-0.3Si is comparable to that of wrought bars. 展开更多
关键词 titanium alloy MICROSTRUCTURE tensile properties laser melting deposition
下载PDF
Low cycle fatigue behavior of laser melting deposited TC18 titanium alloy 被引量:7
17
作者 李真 田象军 +1 位作者 汤海波 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2591-2597,共7页
Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was ... Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was obtained by double annealed treatment, and inhomogeneous grain boundaryαphase was detected. Fatigue fracture surfaces and longitudinal sections of LCF specimens were examined by optical microscopy and scanning electron microscopy. Results indicate that more than one crack initiation site can be detected on the LCF fracture surface. The fracture morphology of the secondary crack initiation site is different from that of the primary crack initiation site. When the crack grows along the grain boundaryαphase, continuous grain boundaryαphase leads to a straight propagating manner while discontinuous grain boundaryαphase gives rise to flexural propagating mode. 展开更多
关键词 titanium alloy low cycle fatigue laser melting deposition
下载PDF
Effects of low melting point metals(Ga,In,Sn) on hydrolysis properties of aluminum alloys 被引量:3
18
作者 王凡强 王辉虎 +5 位作者 王建 芦佳 罗平 常鹰 马新国 董仕节 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期152-159,共8页
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly... Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity. 展开更多
关键词 aluminum alloy low melting point metal HYDROLYSIS hydrogen generation mechanical ball milling method
下载PDF
Effect of Rare Earth on Microstructure of Vacuum Melting Ni-Based Self-Fluxing Alloy Coatings 被引量:9
19
作者 宣天鹏 闵丹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期517-520,共4页
The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase stru... The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating. 展开更多
关键词 metal materals vacuum melting MICROSTRUCTURE Ni-based self-fluxing alloy rare earths
下载PDF
Effects of rare earth La on the microstructure and melting property of(Ag-Cu_(28))-30Sn alloys prepared by mechanical alloying 被引量:6
20
作者 LI Liangfeng QIU Tai +1 位作者 YANG Jian FENG Yongbao 《Rare Metals》 SCIE EI CAS CSCD 2011年第1期49-52,共4页
To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La wer... To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La were prepared by mechanical alloying.The aim of this research is to investigate the effects of the addition of La on the microstructures,alloying process and melting properties of(Ag-Cu28)-30Sn alloys.The results show that the addition of La produces no new phase.A trace amount of La addition can effectively refine the grain size,but the excessive addition of 1.0 wt.% La inhibits the alloying process.The influence of La on the melting temperatures of solder alloys is negligible.However,the trace addition of 0.5 wt.% La can distinctly reduce the fusion zone and improve the melting property of(Ag-Cu28)-30Sn alloys. 展开更多
关键词 solders rare earths mechanical alloying MICROSTRUCTURE meltING
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部