采用旋转圆盘电极(Rotating disk electrode,RDE),通过循环伏安法(Cyclic voltammetry,CV)分析了硝酸锰浓度、硝酸浓度、硝酸铅浓度和溶液温度对PbO_2和MnO_2共沉积的影响规律,获得了PbO_2和MnO_2共沉积的最优条件。探究了旋转圆盘电极...采用旋转圆盘电极(Rotating disk electrode,RDE),通过循环伏安法(Cyclic voltammetry,CV)分析了硝酸锰浓度、硝酸浓度、硝酸铅浓度和溶液温度对PbO_2和MnO_2共沉积的影响规律,获得了PbO_2和MnO_2共沉积的最优条件。探究了旋转圆盘电极转速对PbO_2和MnO_2共沉积的影响,发现最优条件下其共沉积行为主要受电化学控制。使用扫描电镜(Scanning electron microscope,SEM)观察PbO_2-MnO_2沉积层表面形貌,发现PbO_2-MnO_2沉积层表面以圆球状结构为主。通过X射线衍射仪(X-ray diffraction,XRD)检测到PbO_2-MnO_2沉积层表面出现了一种α-MnO_2、α-PbO_2、β-PbO_2三相同时存在的混合结晶状态。展开更多
The MnO2 samples coated with Ca(OH)2 were prepared by a liquid-phase surface treatment method. The physical properties of the samples were examined by SEM, EDAX and chemical analysis, and their electrochemical perfo...The MnO2 samples coated with Ca(OH)2 were prepared by a liquid-phase surface treatment method. The physical properties of the samples were examined by SEM, EDAX and chemical analysis, and their electrochemical performances were investigated by means of galvanostatic charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The SEM results show that the samples coated with Ca(OH)2 display a porous surface structure. The electrochemical experiments indicate that the surface modification decreases the polarization of MnO2 electrodes and improves their discharge potentials and discharge capacities.展开更多
文摘采用旋转圆盘电极(Rotating disk electrode,RDE),通过循环伏安法(Cyclic voltammetry,CV)分析了硝酸锰浓度、硝酸浓度、硝酸铅浓度和溶液温度对PbO_2和MnO_2共沉积的影响规律,获得了PbO_2和MnO_2共沉积的最优条件。探究了旋转圆盘电极转速对PbO_2和MnO_2共沉积的影响,发现最优条件下其共沉积行为主要受电化学控制。使用扫描电镜(Scanning electron microscope,SEM)观察PbO_2-MnO_2沉积层表面形貌,发现PbO_2-MnO_2沉积层表面以圆球状结构为主。通过X射线衍射仪(X-ray diffraction,XRD)检测到PbO_2-MnO_2沉积层表面出现了一种α-MnO_2、α-PbO_2、β-PbO_2三相同时存在的混合结晶状态。
基金Project (59902004) supported by the National Natural Science Foundation of China
文摘The MnO2 samples coated with Ca(OH)2 were prepared by a liquid-phase surface treatment method. The physical properties of the samples were examined by SEM, EDAX and chemical analysis, and their electrochemical performances were investigated by means of galvanostatic charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The SEM results show that the samples coated with Ca(OH)2 display a porous surface structure. The electrochemical experiments indicate that the surface modification decreases the polarization of MnO2 electrodes and improves their discharge potentials and discharge capacities.