A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added t...A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NOx from cigarette mainstream smoke.The catalysis and reduction of NO in laboratory were studied.A mechanism for NOx catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described.The catalysts show excellent catalytic activity for NOx removal,especially the Ag-doped OMS-2 catalyst.0.5%(mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NOx from cigarette mainstream smoke.The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.展开更多
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
The Pd catalyst supported on cryptomelanetype manganese oxide octahedral molecular sieve (OMS- 2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate ove...The Pd catalyst supported on cryptomelanetype manganese oxide octahedral molecular sieve (OMS- 2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over xPd/OMS-2 has been investigated. The results show that the Pd loading plays an important role on the physicochemical properties of the xPd/OMS-2 catalysts which outperform the Pd-free counterpart with the 0.5Pd/ OMS-2 catalyst being the best. The temperature for 50% conversion was 25, 240 and 160 ℃, and the temperature for 90% conversion was 55,285 and 200 ℃ for oxidation of CO, toluene, and ethyl acetate, respectively. The low- temperature reducibility and high oxygen mobility ofxPd/ OMS-2 are the factors contributable to the excellent catalytic performance of 0.5Pd/OMS-2.展开更多
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentratio...OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples.展开更多
文摘A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NOx from cigarette mainstream smoke.The catalysis and reduction of NO in laboratory were studied.A mechanism for NOx catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described.The catalysts show excellent catalytic activity for NOx removal,especially the Ag-doped OMS-2 catalyst.0.5%(mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NOx from cigarette mainstream smoke.The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005) and Natural Science Foundation of Beijing (Grant No. 8082008).
文摘The Pd catalyst supported on cryptomelanetype manganese oxide octahedral molecular sieve (OMS- 2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over xPd/OMS-2 has been investigated. The results show that the Pd loading plays an important role on the physicochemical properties of the xPd/OMS-2 catalysts which outperform the Pd-free counterpart with the 0.5Pd/ OMS-2 catalyst being the best. The temperature for 50% conversion was 25, 240 and 160 ℃, and the temperature for 90% conversion was 55,285 and 200 ℃ for oxidation of CO, toluene, and ethyl acetate, respectively. The low- temperature reducibility and high oxygen mobility ofxPd/ OMS-2 are the factors contributable to the excellent catalytic performance of 0.5Pd/OMS-2.
基金financially supported by the National Natural Science Foundation of China (No. 21422706)the Program of the Ministry of Science and Technology of China (No. 2012AA062702)
文摘OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples.