期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Surfactant-assisted synthesis and magnetic properties of monodispersed manganese ferrite nanocrystals
1
作者 史蓉蓉 邱冠周 刘小鹤 《Journal of Central South University》 SCIE EI CAS 2011年第5期1371-1376,共6页
Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which oct... Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals. 展开更多
关键词 PYROLYSIS monodisperse nanocrystal manganese ferrite magnetic properties
下载PDF
Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
2
作者 邱庆伟 徐晓文 +1 位作者 何芒 张洪旺 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期556-559,共4页
MnFe204 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution- phase method. The as-synthesized NPs were coated with a silica shell of 4 nm-5 nm in thickness, ena... MnFe204 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution- phase method. The as-synthesized NPs were coated with a silica shell of 4 nm-5 nm in thickness, enabling the water- solubility and biocompatibility of the NPs. The MnFe204 NPs with a size of less than 18 nm exhibit superparamagnetic behavior with high saturated magnetization. The capacity of the heat production was enhanced by increasing particle sizes and radio frequency (RF) field strengths. MnFe204/SiO2 NPs with 18-nm magnetic cores showed the highest heat- generation ability under an RF field. These MnFe204/SiO2 NPs have great potentiality to cancer treatments, controlled drug releases, and remote controls of single cell functions. 展开更多
关键词 manganese ferrite magnetic nanoparticles silica coating HYPERTHERMIA
下载PDF
p-Arsanilic acid decontamination over a wide pH range using biochar-supported manganese ferrite material as an effective persulfate catalyst:Performances and mechanisms 被引量:3
3
作者 Bin Yao Xia Chen +4 位作者 Kun Zhou Zirui Luo Peipei Li Zihui Yang Yaoyu Zhou 《Biochar》 SCIE 2022年第1期665-677,共13页
Direct chemical oxidation and pure adsorption could not effectively remove p-Arsanilic acid(p-ASA)and the released inor-ganic arsenic.Herein,one novel biochar supported MnFe_(2)O_(4)(MFB)was synthesized and adopted fo... Direct chemical oxidation and pure adsorption could not effectively remove p-Arsanilic acid(p-ASA)and the released inor-ganic arsenic.Herein,one novel biochar supported MnFe_(2)O_(4)(MFB)was synthesized and adopted for p-ASA degradation and synchronous adsorption of the generated inorganic arsenic.The MFB/persulfate(PS)system could remain effective under a wide pH range(3.0-9.0),and the released arsenic could be removed simultaneously by MFB.Mechanism investiga-tion revealed that the functional groups of MFB(i.e.O-C=O and C=O),Fe and Mn oxides on MFB all contributed to PS activation.O_(2)^(·−)and^(1)O_(2)were the main reactive oxygen species(ROS)responsible for p-ASA degradation,and^(1)O_(2)was the predominant ROS.Besides,the MFB possessed superior reusability.Therefore,it is expected to develop a potential method for organic arsenic contaminants removal via an oxidation-adsorption process,and the results could also shed light on the better understanding of the PS activation mechanisms. 展开更多
关键词 PERSULFATE BIOCHAR manganese ferrite Redox cycle Organic arsenic compounds
原文传递
Effect of Sintering Conditions on Structure of Manganese Zinc Ferrite Powders
4
作者 DONG Li-min HAN Zhi-dong WU Ze ZHANG Xian-you 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期179-182,共4页
The structures of the Mn-Zn ferrites synthesized under different sintering conditions by the sol-gel method were investigated by the X-ray diffraction (XRD) and the scanning electron microscopy (SEM) with focus on... The structures of the Mn-Zn ferrites synthesized under different sintering conditions by the sol-gel method were investigated by the X-ray diffraction (XRD) and the scanning electron microscopy (SEM) with focus on two factors: the pre-sintering treatment and the calcining time. The results show that the sintering conditions have significant effects on the structures and the particle size of the Mn-Zn ferrites. Compared with the products without pre-sintering, those pre-sintered at 500℃ have a single phase and no diffraction peaks of Fe2O3 that could be found. The effects of the pre-sintering temperature on the structures of the ferrites were also studied. As a result, 500℃ proves to be the favorite in the pre-sintering treatment. The XRD patterns of the ferrites calcined at 1 200℃ for 6 h will present diffraction peaks of pure crystallization of spinel phase while those for 2 h or 4 h will show peaks of Fe2O3. The SEM also bears witness to well-grown grains of pure Mn-Zn ferrites if calcined for 6 hours. 展开更多
关键词 manganese zinc ferrite SPINEL SOL-GEL sintering time
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部