期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning
1
作者 Hong Huang Fulin Luo +1 位作者 Zezhong Ma Hailiang Feng 《Journal of Computer and Communications》 2015年第11期33-39,共7页
In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploit... In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturally gives relative importance to the labeled ones through a graph-based methodology. Then it tries to extract discriminative features on each manifold such that the data points in the same manifold become closer. The effectiveness of the proposed multi-manifold learning algorithm is demonstrated and compared through experiments on a real hyperspectral images. 展开更多
关键词 HYPERSPECTRAL IMAGE Classification dimensionality reduction Multiple manifoldS Structure SPARSE REPRESENTATION SEMI-SUPERVISED learning
下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
2
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
下载PDF
Implementation of Manifold Learning Algorithm Isometric Mapping
3
作者 Huan Yang Haiming Li 《Journal of Computer and Communications》 2019年第12期11-19,共9页
In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low ... In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low dimensional structure hidden in high-dimensional data. Nonlinear dimensionality reduction facilitates the discovery of the intrinsic structure and relevance of the data and can make the high-dimensional data visible in the low dimension. The isometric mapping algorithm (Isomap) is an important algorithm for nonlinear dimensionality reduction, which originates from the traditional dimensionality reduction algorithm MDS. The MDS algorithm is based on maintaining the distance between the samples in the original space and the distance between the samples in the lower dimensional space;the distance used here is Euclidean distance, and the Isomap algorithm discards the Euclidean distance, and calculates the shortest path between samples by Floyd algorithm to approximate the geodesic distance along the manifold surface. Compared with the previous nonlinear dimensionality reduction algorithm, the Isomap algorithm can effectively compute a global optimal solution, and it can ensure that the data manifold converges to the real structure asymptotically. 展开更多
关键词 manifold NONLINEAR dimensionality reduction isomap ALGORITHM MDS ALGORITHM
下载PDF
Clustering Analysis of Stocks of CSI 300 Index Based on Manifold Learning
4
作者 Ruiling Liu Hengjin Cai Cheng Luo 《Journal of Intelligent Learning Systems and Applications》 2012年第2期120-126,共7页
As an effective way in finding the underlying parameters of a high-dimension space, manifold learning is popular in nonlinear dimensionality reduction which makes high-dimensional data easily to be observed and analyz... As an effective way in finding the underlying parameters of a high-dimension space, manifold learning is popular in nonlinear dimensionality reduction which makes high-dimensional data easily to be observed and analyzed. In this paper, Isomap, one of the most famous manifold learning algorithms, is applied to process closing prices of stocks of CSI 300 index from September 2009 to October 2011. Results indicate that Isomap algorithm not only reduces dimensionality of stock data successfully, but also classifies most stocks according to their trends efficiently. 展开更多
关键词 manifold learning isomap Nonlinear dimensionality reduction STOCK CLUSTERING
下载PDF
增量Hessian LLE算法研究 被引量:4
5
作者 李厚森 成礼智 《计算机工程》 CAS CSCD 北大核心 2011年第6期159-161,共3页
利用基于Ritz加速的逆幂迭代算法,在经典的Hessian LLE算法基础上提出一种增量LLE算法,能够高效地处理新增的一个或多个样本。该算法的核心思想是将增量流形学习问题转化为一个增量特征值问题,利用数值线性代数的工具进行求解,并分析算... 利用基于Ritz加速的逆幂迭代算法,在经典的Hessian LLE算法基础上提出一种增量LLE算法,能够高效地处理新增的一个或多个样本。该算法的核心思想是将增量流形学习问题转化为一个增量特征值问题,利用数值线性代数的工具进行求解,并分析算法的收敛性。在合成数据集和图像数据集上,验证该增量算法的效率和精确度。 展开更多
关键词 维数约简 流形学习 增量学习 Hessianlle算法
下载PDF
基于Semi-Supervised LLE的人脸表情识别方法 被引量:1
6
作者 冯海亮 黄鸿 +1 位作者 李见为 魏明 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1109-1113,共5页
目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点... 目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果该方法能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的维数约简方法.结论笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能. 展开更多
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别
下载PDF
Image feature optimization based on nonlinear dimensionality reduction 被引量:3
7
作者 Rong ZHU Min YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1720-1737,共18页
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping... Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms. 展开更多
关键词 Image feature optimization Nonlinear dimensionality reduction manifold learning Locally linear embedding lle
原文传递
Nonlinear Dimensionality Reduction by Local Orthogonality Preserving Alignment 被引量:2
8
作者 Tong Lin Yao Liu +2 位作者 Bo Wang Li-Wei Wang Hong-Bin Zha 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第3期512-524,共13页
We present a new manifold learning algorithm called Local Orthogonality Preserving Alignment (LOPA). Our algorithm is inspired by the Local Tangent Space Alignment (LTSA) method that aims to align multiple local n... We present a new manifold learning algorithm called Local Orthogonality Preserving Alignment (LOPA). Our algorithm is inspired by the Local Tangent Space Alignment (LTSA) method that aims to align multiple local neighborhoods into a global coordinate system using affine transformations. However, LTSA often fails to preserve original geometric quantities such as distances and angles. Although an iterative alignment procedure for preserving orthogonality was suggested by the authors of LTSA, neither the corresponding initialization nor the experiments were given. Procrustes Subspaces Alignment (PSA) implements the orthogonality preserving idea by estimating each rotation transformation separately with simulated annealing. However, the optimization in PSA is complicated and multiple separated local rotations may produce globally contradictive results. To address these difficulties, we first use the pseudo-inverse trick of LTSA to represent each local orthogonal transformation with the unified global coordinates. Second the orthogonality constraints are relaxed to be an instance of semi-definite programming (SDP). Finally a two-step iterative procedure is employed to further reduce the errors in orthogonal constraints. Extensive experiments products, and neighborhoods of the original datasets. In that of PSA and comparable to that of state-of-the-art significantly faster than that of PSA, MVU and MVE. show that LOPA can faithfully preserve distances, angles, inner comparison, the embedding performance of LOPA is better than algorithms like MVU and MVE, while the runtime of LOPA is 展开更多
关键词 manifold learning dimensionality reduction senti-definite programming Procrustes measure
原文传递
Incremental Alignment Manifold Learning 被引量:1
9
作者 韩志 孟德宇 +1 位作者 徐宗本 古楠楠 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期153-165,共13页
A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to increment... A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire data.set. The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated. 展开更多
关键词 ALIGNMENT incremental learning manifold learning nonlinear dimensionality reduction out-of-sample issue
原文传递
Atlas Compatibility Transformation:A Normal Manifold Learning Algorithm
10
作者 Zhong-Hua Hao Shi-Wei Ma Fan Zhao 《International Journal of Automation and computing》 EI CSCD 2015年第4期382-392,共11页
Over the past few years,nonlinear manifold learning has been widely exploited in data analysis and machine learning.This paper presents a novel manifold learning algorithm,named atlas compatibility transformation(ACT)... Over the past few years,nonlinear manifold learning has been widely exploited in data analysis and machine learning.This paper presents a novel manifold learning algorithm,named atlas compatibility transformation(ACT),It solves two problems which correspond to two key points in the manifold definition:how to chart a given manifold and how to align the patches to a global coordinate space based on compatibility.For the first problem,we divide the manifold into maximal linear patch(MLP) based on normal vector field of the manifold.For the second problem,we align patches into an optimal global system by solving a generalized eigenvalue problem.Compared with the traditional method,the ACT could deal with noise datasets and fragment datasets.Moreover,the mappings between high dimensional space and low dimensional space are given.Experiments on both synthetic data and real-world data indicate the effection of the proposed algorithm. 展开更多
关键词 Nonlinear dimensionality reduction manifold learning normal vector field maximal linear patch ambient space.
原文传递
融合LLE和ISOMAP的非线性降维方法 被引量:12
11
作者 张少龙 巩知乐 廖海斌 《计算机应用研究》 CSCD 北大核心 2014年第1期277-280,共4页
局部线性嵌入(LLE)和等距映射(ISOMAP)在降维过程中都只单一地保留数据集的某一种特性结构,从而使降维后的数据集往往存在顾此失彼的情况。针对这种情况,借助流形学习的核框架,提出融合LLE和ISOMAP的非线性降维方法。新的融合方法使降... 局部线性嵌入(LLE)和等距映射(ISOMAP)在降维过程中都只单一地保留数据集的某一种特性结构,从而使降维后的数据集往往存在顾此失彼的情况。针对这种情况,借助流形学习的核框架,提出融合LLE和ISOMAP的非线性降维方法。新的融合方法使降维后的数据集既保持着数据点间的局部邻域关系,也保持着数据点间的全局距离关系。在仿真数据集和实际数据集上的实验结果证实了该方法的优越性。 展开更多
关键词 人脸识别 流形学习 数据降维 全局距离保持 局部结构保持
下载PDF
Manifold Structure Analysis of Tactical Network Traffic Matrix Based on Maximum Variance Unfolding Algorithm
12
作者 Hao Shi Guofeng Wang +2 位作者 Rouxi Wang Jinshan Yang Kaishuan Shang 《Journal of Electronic Research and Application》 2023年第6期42-49,共8页
As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becomin... As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively complex.In this paper,we employ a traffic matrix to model the tactical data link network.We propose a method that utilizes the Maximum Variance Unfolding(MVU)algorithm to conduct nonlinear dimensionality reduction analysis on high-dimensional open network traffic matrix datasets.This approach introduces novel ideas and methods for future applications,including traffic prediction and anomaly analysis in real battlefield network environments. 展开更多
关键词 manifold learning Maximum Variance Unfolding(MVU)algorithm Nonlinear dimensionality reduction
下载PDF
基于空间光谱联合的LPP算法
13
作者 邹彦艳 田年年 《吉林大学学报(信息科学版)》 CAS 2024年第3期550-558,共9页
针对原始的流形学习算法仅利用其光谱特征而没有利用空间信息的问题,提出了基于监督的空谱联合的局部保持投影算法(SS-LPP:Spatial-Spectral Locality Preserving Projections)。该算法首先使用加权均值滤波算法对数据集进行滤波,将空... 针对原始的流形学习算法仅利用其光谱特征而没有利用空间信息的问题,提出了基于监督的空谱联合的局部保持投影算法(SS-LPP:Spatial-Spectral Locality Preserving Projections)。该算法首先使用加权均值滤波算法对数据集进行滤波,将空间信息与光谱信息进行融合并消除噪点的干扰,增加同类数据的相关性。然后利用标签集构造类内图和类间图,并通过其可有效提取鉴别特征和改善分类性能。在Salinas和PaviaU数据集上对该算法的有效性进行验证。实验结果表明,该算法能有效提取数据特征,并提高分类的准确性。 展开更多
关键词 流形学习 降维 高光谱遥感影像 特征提取
下载PDF
基于Isomap的流形结构重建方法 被引量:20
14
作者 孟德宇 徐晨 徐宗本 《计算机学报》 EI CSCD 北大核心 2010年第3期545-555,共11页
已有的流形学习方法仅能建立点对点的降维嵌入,而未建立高维数据流形空间与低维表示空间之间的相互映射.此缺陷已限制了流形学习方法在诸多数据挖掘问题中的进一步应用.针对这一问题,文中提出了两种新型高效的流形结构重建算法:快速算... 已有的流形学习方法仅能建立点对点的降维嵌入,而未建立高维数据流形空间与低维表示空间之间的相互映射.此缺陷已限制了流形学习方法在诸多数据挖掘问题中的进一步应用.针对这一问题,文中提出了两种新型高效的流形结构重建算法:快速算法与稳健算法.其均以经典的Isomap方法内在运行机理为出发点,进而推导出高维流形空间与低维表示空间之间双向的显式映射函数关系,基于此函数即可实现流形映射的有效重建.理论分析与实验结果证明,所提算法在计算速度、噪音敏感性、映射表现等方面相对已有方法具有明显优势. 展开更多
关键词 数据降维 流形学习 等距特征映射 模式分类 特征描述
下载PDF
基于改进ISOMAP算法的图像分类 被引量:3
15
作者 魏宪 李元祥 +2 位作者 赵海涛 庹红娅 许鹏 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期911-915,共5页
利用基于邻域的图像欧氏距离寻找最近邻,并用直接线性判别分析方法(Direct LDA)取代多维尺度分析法(MDS),提出一种改进的等距特征映射(ISOMAP)算法(KIMD-ISOMAP)进行降维.人脸图像分类试验表明:KIMD-ISOMAP提高了ISOMAP的分类能力,扩展... 利用基于邻域的图像欧氏距离寻找最近邻,并用直接线性判别分析方法(Direct LDA)取代多维尺度分析法(MDS),提出一种改进的等距特征映射(ISOMAP)算法(KIMD-ISOMAP)进行降维.人脸图像分类试验表明:KIMD-ISOMAP提高了ISOMAP的分类能力,扩展了邻域半径的选取范围,在加高斯噪声和几何形变的情况下,该算法与其他方法相比,表现出较强的鲁棒性. 展开更多
关键词 流形学习 等距特征映射 直接线性判别 图像欧氏距离 降维
下载PDF
基于等维度独立多流形的DC-ISOMAP算法 被引量:7
16
作者 高小方 梁吉业 《计算机研究与发展》 EI CSCD 北大核心 2013年第8期1690-1699,共10页
流形学习已经成为机器学习与数据挖掘领域中一个重要的研究课题.目前的流形学习算法都假设所研究的高维数据存在于同一个流形上,并不能支持或者应用于大量存在的采样于多流形上的高维数据.针对等维度的独立多流形DC-ISOMAP算法,首先通... 流形学习已经成为机器学习与数据挖掘领域中一个重要的研究课题.目前的流形学习算法都假设所研究的高维数据存在于同一个流形上,并不能支持或者应用于大量存在的采样于多流形上的高维数据.针对等维度的独立多流形DC-ISOMAP算法,首先通过从采样密集点开始扩展切空间的方法将多流形准确分解为单个流形,并逐个计算其低维嵌入,然后基于各子流形间的内部位置关系将其低维嵌入组合起来,得到最终的嵌入结果.实验结果表明,该算法在人造数据和实际的人脸图像数据上都能有效地计算出高维数据的低维嵌入结果. 展开更多
关键词 非线性维数约简 流形学习 独立多流形 切空间 DC—isomap
下载PDF
基于ISOMAP改进算法的人耳识别 被引量:2
17
作者 刘嘉敏 李连泽 +1 位作者 王会岩 罗甫林 《计算机应用研究》 CSCD 北大核心 2014年第12期3867-3869,3906,共4页
针对ISOMAP算法对新增样本泛化能力较差的缺点,通过对LLE算法局部重构思想的深入理解,提出了MRC-ISOMAP(manifold reconstruction-ISOMAP)算法用于样本特征的维数约简。MRC-ISOMAP算法对训练样本采用全局非线性结构保持的思想,利用ISOMA... 针对ISOMAP算法对新增样本泛化能力较差的缺点,通过对LLE算法局部重构思想的深入理解,提出了MRC-ISOMAP(manifold reconstruction-ISOMAP)算法用于样本特征的维数约简。MRC-ISOMAP算法对训练样本采用全局非线性结构保持的思想,利用ISOMAP算法计算训练样本的低维表示;对新增样本利用局部线性的思想,保持局部线性关系不变,从而可以更加快速准确地用低维训练样本重构新增样本的低维表示。USTB3人耳图像库上的实验结果表明,与原始ISOMAP算法相比,MRC-ISOMAP算法可以获得更高的识别率,并在处理新样本时具有更高的效率。 展开更多
关键词 人耳识别 流形学习 等距映射 局部线性嵌入
下载PDF
应用SLLE实现手写体数字识别 被引量:4
18
作者 杨晓敏 吴炜 +1 位作者 何小海 陈默 《光学精密工程》 EI CAS CSCD 北大核心 2009年第3期641-647,共7页
针对在手写字符识别中由于书写习惯和风格的不同而造成的字符模式不稳定问题,提出了一种基于流形学习的手写体数字识别方法。在流形学习非监督的基础上引入了监督信息,从而保证高维到低维的映射在保留流形某些结构的同时也可进一步分离... 针对在手写字符识别中由于书写习惯和风格的不同而造成的字符模式不稳定问题,提出了一种基于流形学习的手写体数字识别方法。在流形学习非监督的基础上引入了监督信息,从而保证高维到低维的映射在保留流形某些结构的同时也可进一步分离不同类别的流形。算法首先利用基于监督的局部线性嵌入(SLLE)对手写体数字图像进行字符特征的降维,然后再对降维后的特征进行分类识别。对MINST库中手写体数字数据库进行了实验,实验结果表明,利用SLLE降维以后的特征能够有效地区分字符,识别率可达到93.27%;由于具有较好的识别率,能够发现高维空间的低维嵌入流形。 展开更多
关键词 流形学习 监督局部线性嵌入 手写字符识别 非线性降维
下载PDF
自适应邻域值选取的LLE算法研究 被引量:3
19
作者 高洁 吴立锋 +1 位作者 关永 王洪民 《小型微型计算机系统》 CSCD 北大核心 2017年第2期393-397,共5页
局部线性嵌入(LLE)是一种重要的流形学习算法,已广泛应用于图像处理和多维数据的可视化等领域,但其算法性能一直受邻域选择盲目性的制约.传统的邻域选择算法没有同时考虑高低维数据的分布情况,且没有对无效邻域点做出相应的处理,使自适... 局部线性嵌入(LLE)是一种重要的流形学习算法,已广泛应用于图像处理和多维数据的可视化等领域,但其算法性能一直受邻域选择盲目性的制约.传统的邻域选择算法没有同时考虑高低维数据的分布情况,且没有对无效邻域点做出相应的处理,使自适应结果受初始值影响较大.为此,提出新的自适应流形学习思想,用邻域点到切平面坐标映射函数的一阶泰勒逼近,初步确定出局部邻域值;然后利用关于高低维分布差异性函数的邻域调整策略和权值邻域思想,对初始邻域值进一步调整.该方法提高了LLE邻域选取算法的稳定性,同时减小无效邻域点被选中的可能.仿真表明,基于本文方法确定的自适应结果在不同的初始邻域值下基本一致,在人工数据集Swiss-roll上获得理想稳定的降维效果. 展开更多
关键词 流形学习 权值邻域 降维 局部切平面
下载PDF
基于模糊聚类的改进LLE算法 被引量:4
20
作者 苏锦旗 张文宇 《计算机与现代化》 2014年第5期10-13,共4页
局部线性嵌入法(Locally Linear Embedding,LLE)是一种基于流形学习的非线性降维方法。针对LLE近邻点个数选取、样本点分布以及计算速度的问题,提出基于模糊聚类的改进LLE算法。算法根据聚类中心含有大量的信息这一特点,基于模糊聚类原... 局部线性嵌入法(Locally Linear Embedding,LLE)是一种基于流形学习的非线性降维方法。针对LLE近邻点个数选取、样本点分布以及计算速度的问题,提出基于模糊聚类的改进LLE算法。算法根据聚类中心含有大量的信息这一特点,基于模糊聚类原理,采用改进的样本点距离计算方法,定义了近似重构系数,提高了LLE计算速度,改进了模糊近邻点个数的选取。实验结果表明,改进的算法有效地降低了近邻点个数对算法的影响,具有更好的降维效果和更高的计算速度。 展开更多
关键词 数据降维 流形学习 局部线性嵌入 近似重构系数
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部