期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Parameter estimation in Manneville–Pomeau processes
1
作者 Barbara P.Olbermann Sílvia R.C.Lopes Artur O.Lopes 《Probability, Uncertainty and Quantitative Risk》 2023年第2期213-234,共22页
In this paper,we study a class of stochastic processes{X_(t)}t∈N,where X_(t)=φ■T_(s)^(t)(X_(0))is obtained from the iterations of the transformation T_(s),invariant for an ergodic probabilityμ_(s)on[0,1]and a cert... In this paper,we study a class of stochastic processes{X_(t)}t∈N,where X_(t)=φ■T_(s)^(t)(X_(0))is obtained from the iterations of the transformation T_(s),invariant for an ergodic probabilityμ_(s)on[0,1]and a certain constant by partial functionφ:[0,1]→R.We consider here the family of transformations T_(s):[0,1]→[0,1]indexed by a parameters>0,known as the Manneville–Pomeau family of transformations.The autocorrelation function of the resulting process decays hyperbolically(or polynomially)and we obtain efficient methods to estimate the parameter s from a finite time series.As a consequence,we also estimate the rate of convergence of the autocorrelation decay of these processes.We compare different estimation methods based on the periodogram function,the smoothed periodogram function,the variance of the partial sum,and the wavelet theory.To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series. 展开更多
关键词 manneville–pomeau maps Long and not so long dependence Estimation Autocorrelation decay Spectral density function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部