Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ...In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision mod...Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energ...In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.展开更多
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into th...The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.展开更多
Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to sol...Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.展开更多
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ...Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.展开更多
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an...This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.展开更多
The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of ...The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of the employed methods by acquiring exact analytical solutions for the governing equations in most cases;while minimal noisy error terms have been observed in a particular method modification. Above all, the presented approaches have rightly affirmed the exactitude of the available literature. More to the point, the application of this methodology could be extended to examine various forms of high-order differential equations, as approximate exact solutions are rapidly attained with less computation stress.展开更多
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio...We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.展开更多
We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ...We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72.展开更多
In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial condition...In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality.展开更多
In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making s...In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making some assumptions about the nonlinear function term . The existence of the family of global attractor and its Hausdorff dimension and Fractal dimension estimation are proved.展开更多
In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amaz...In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.展开更多
Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’...Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function.展开更多
In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann op...In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann operators corresponding to a potential radial have the same properties for hyperbolic differential equations as for elliptic differential equations. We numerically implement the coefficients of the explicit formulas. Moreover, a Lipschitz type stability is established near the edge of the domain by an estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neumann map in the inverse problem for a hyperbolic differential equation.展开更多
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial m...In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.展开更多
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金supported by China Postdoctoral Science Foundation grant 2020TQ0344the NSFC grants 11871139 and 12101597the NSF grants DMS-1720116,DMS-2012882,DMS-2011838,DMS-1719942,DMS-1913072.
文摘In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
文摘Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.
文摘In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.
基金supported by the Higher Education Project(Grant No.698/UN27.11/PN/2015)
文摘The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.
文摘Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.
文摘Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.
文摘This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.
文摘The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of the employed methods by acquiring exact analytical solutions for the governing equations in most cases;while minimal noisy error terms have been observed in a particular method modification. Above all, the presented approaches have rightly affirmed the exactitude of the available literature. More to the point, the application of this methodology could be extended to examine various forms of high-order differential equations, as approximate exact solutions are rapidly attained with less computation stress.
文摘We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.
文摘We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72.
文摘In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality.
文摘In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making some assumptions about the nonlinear function term . The existence of the family of global attractor and its Hausdorff dimension and Fractal dimension estimation are proved.
文摘In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.
文摘Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function.
文摘In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann operators corresponding to a potential radial have the same properties for hyperbolic differential equations as for elliptic differential equations. We numerically implement the coefficients of the explicit formulas. Moreover, a Lipschitz type stability is established near the edge of the domain by an estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neumann map in the inverse problem for a hyperbolic differential equation.
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
文摘In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.