The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonia...The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonian matches the symmetry of a fermion or boson system in a certain fashion, a perfect quantum state transfer can be implemented without any operation on the medium with pre-engineered nearest neighbor (NN). We also study a simple but realistic near half-filled tight-bindlng fermion system wlth uniform NN hopping integral. We show that an arbitrary many-particle state near the fermi surface can be perfectly transferred to its translational counterpart.展开更多
It is shown that a single-particle wave function Ψ, obtained (Landau, 1930) as a solution of the Schr?dinger equation (for a charged particle in a homogeneous magnetic field), and an operator relation of?(or equation...It is shown that a single-particle wave function Ψ, obtained (Landau, 1930) as a solution of the Schr?dinger equation (for a charged particle in a homogeneous magnetic field), and an operator relation of?(or equation?) lead to the dynamic description of one-dimensional many-particle quantum filamentary states. Thus, one can overcome the problem, connected with the finding of many-body wave function as solution of the Schr?dinger equation with a very tangled Hamiltonian for multi-body system. An effect of nonlocality appears. The dependence of the linear density of particles on the magnetic field and on the number of particles in the one- dimension filamentary multiparticle quantum structure is calculated.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90203018, 10474104, and 10447133, and the Knowledge Innovation Program (KIP) of the Chinese Academy of Sciences, the National Fundamental Research Program of China under Grant No. 2001CB309310
文摘The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonian matches the symmetry of a fermion or boson system in a certain fashion, a perfect quantum state transfer can be implemented without any operation on the medium with pre-engineered nearest neighbor (NN). We also study a simple but realistic near half-filled tight-bindlng fermion system wlth uniform NN hopping integral. We show that an arbitrary many-particle state near the fermi surface can be perfectly transferred to its translational counterpart.
文摘It is shown that a single-particle wave function Ψ, obtained (Landau, 1930) as a solution of the Schr?dinger equation (for a charged particle in a homogeneous magnetic field), and an operator relation of?(or equation?) lead to the dynamic description of one-dimensional many-particle quantum filamentary states. Thus, one can overcome the problem, connected with the finding of many-body wave function as solution of the Schr?dinger equation with a very tangled Hamiltonian for multi-body system. An effect of nonlocality appears. The dependence of the linear density of particles on the magnetic field and on the number of particles in the one- dimension filamentary multiparticle quantum structure is calculated.