In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo...In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.展开更多
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex...With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.展开更多
The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To addre...The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To address such issues,current approaches focus mainly on problems with regular Pareto front rather than solving the irregular Pareto front.Considering this situation,we propose a many-objective evolutionary algorithm based on decomposition with dynamic resource allocation(Ma OEA/D-DRA)for irregular optimization.The proposed algorithm can dynamically allocate computing resources to different search areas according to different shapes of the problem’s Pareto front.An evolutionary population and an external archive are used in the search process,and information extracted from the external archive is used to guide the evolutionary population to different search regions.The evolutionary population evolves with the Tchebycheff approach to decompose a problem into several subproblems,and all the subproblems are optimized in a collaborative manner.The external archive is updated with the method of rithms using a variety of test problems with irregular Pareto front.Experimental results show that the proposed algorithèm out-p£performs these five algorithms with respect to convergence speed and diversity of population members.By comparison with the weighted-sum approach and penalty-based boundary intersection approach,there is an improvement in performance after integration of the Tchebycheff approach into the proposed algorithm.展开更多
基金supported in part by the National Natural Science Foundation of China(51775385)the Natural Science Foundation of Shanghai(23ZR1466000)+3 种基金the Shanghai Industrial Collaborative Science and Technology Innovation Project(2021-cyxt2-kj10)the Innovation Program of Shanghai Municipal Education Commission(202101070007E00098)the Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology of MOE(1221046)the Program to Cultivate Middle-Aged and Young Cadre Teacher of Jiangsu Province。
文摘In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFC1604000)the National Natural Science Foundation of China(Nos.61806138,61772478,U1636220,61961160707,and 61976212)+2 种基金the Key R&D Program of Shanxi Province(High Technology)(No.201903D121119)the Key R&D Program of Shanxi Province(International Cooperation)(No.201903D421048)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province,China(No.201903D421003).
文摘With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.
基金the National Natural Science Foundation of China(Nos.6156301261802085+5 种基金and 61203109)the Guangxi Natural Science Foundation of China(Nos.2014GhXN6SF AA1183712015GXNSFBA139260and 2020GXNSFAA159038)the Guangxi Key Laboratory of Embedded Technology and Intelligent System Foundation(No.2018A-04)the Guangxi Key Laboratory of Trusted Software Foundation(Nos.kx202011 and khx2601926)。
文摘The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To address such issues,current approaches focus mainly on problems with regular Pareto front rather than solving the irregular Pareto front.Considering this situation,we propose a many-objective evolutionary algorithm based on decomposition with dynamic resource allocation(Ma OEA/D-DRA)for irregular optimization.The proposed algorithm can dynamically allocate computing resources to different search areas according to different shapes of the problem’s Pareto front.An evolutionary population and an external archive are used in the search process,and information extracted from the external archive is used to guide the evolutionary population to different search regions.The evolutionary population evolves with the Tchebycheff approach to decompose a problem into several subproblems,and all the subproblems are optimized in a collaborative manner.The external archive is updated with the method of rithms using a variety of test problems with irregular Pareto front.Experimental results show that the proposed algorithèm out-p£performs these five algorithms with respect to convergence speed and diversity of population members.By comparison with the weighted-sum approach and penalty-based boundary intersection approach,there is an improvement in performance after integration of the Tchebycheff approach into the proposed algorithm.